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Recent efforts to catalog the diversity of sex chromosome

systems coupled with genome sequencing projects are adding

a new level of resolution to our understanding of insect sex

chromosome origins. Y-chromosome degeneration makes

sequencing difficult and may erase homology so rapidly that

their origins will often remain enigmatic. X-chromosome origins

are better understood, but thus far prove to be remarkably

labile, often lacking homology even among close relatives.

Furthermore, evidence now suggests that differentiated X or

Y-chromosomes may both revert to autosomal inheritance.

Data for ZW systems is scarcer, but W and Y-chromosomes

seem to share many characteristics. Limited evidence

suggests that Z-chromosome homology is more conserved

than X counterparts, but broader sampling of both sex

chromosome systems is needed.
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Insects have evolved myriad ways of producing males and

females, but chromosomal sex determination is the most

common (Box 1). Sex chromosomes are thought to origi-

nate from a pair of ancestral autosomes that evolve a sex

determining locus [1]. The sex-limited allele defines a

proto Y or W chromosome in male or female heteroga-

metic respectively. As sexually antagonistic mutations

(i.e. those that benefit one sex at the expense of the

other) arise, selection will favor decreased recombination

between the male or female sex determining allele and

the matching male or female beneficial allele. Once

recombination becomes suppressed, the sex-limited re-

gion of the proto Y or W chromosome is subject to a

variety of population genetic forces that are expected to

result in mutational decay and gene loss [2]. The phylo-

genetically widespread observation of XO (ZO) species

[3] indicates that decay of the Y(W) often results in its

complete loss [4��]. However, decay is not inevitable.
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Some lineages retain homomorphic sex chromosomes

over long evolutionary time scales (e.g. Isoptera). Addi-

tionally, Y and W chromosomes often reemerge in clades

that are ancestrally XO or ZO (e.g. Lepidoptera), a strong

indication - even in the absence of sequence data - that

not all sex-limited chromosomes are homologous [5�,6].

Following we review the genomic origins and turnover of

differentiated sex chromosome in insects with particular

emphasis on recent genome sequencing and comparative

phylogenetic efforts (for more comprehensive reviews of

sex chromosomes and their evolution see [7,8]).

Y-chromosome evolution
Male heterogamety (XY, XO) is the most abundant form

of sex determination in insects (Box 1), having been

documented in 24 of 28 orders encompassing 77% of

sexually reproducing species investigated. However,

the sex specific portions of Y-chromosomes are some of

the least well-understood regions of all genomes. Since

they do not recombine, they cannot be studied with

traditional genetic methods and the decay process leaves

them highly repetitive and heterochromatic, making

them very difficult to sequence and assemble (but see

[9]). Indeed, the most universal observation about sex

specific chromosomes (Y or W) is that they rapidly accu-

mulate transposable elements and become heterochro-

matic. While genomes from both sexes have been

included in many whole-genome sequencing projects,

efforts to systematically mine this potential source of Y

chromosome information are relatively recent (e.g.

[10,11]) and in most species Y-chromosome reads remain

relegated to the large bin of small, unmapped scaffolds.

Consequently, the most detailed information we have

about Y-chromosome origins, structure, and gene content

is based on concerted efforts to sequence a few species of

mammals [9,12,13,14,15�,16,17] and Drosophila [18–23].

The D. melanogaster Y, which is thought to represent the

ancestral Y of the genus, has only 13 protein-coding

genes, all of which derive from autosomal duplications.

One of them, Suppressor of Stellate, is multicopy and has

convergently acquired and amplified the number of

X-linked copies. Intriguingly, Soh and colleagues [9]

recently discovered a similar convergent amplification

of genes on the mouse X and Y. In both mouse and

D. melanogaster the dually acquired X and Y amplicons

may be the relic of a co-evolved meiotic driver/suppressor

system [24–26]. The lack of orthologous genes between

the ancestral Drosophila X and Y has caused some to

speculate that the Y arose from a supernumerary B chromo-

some [20,21,27,28]. However, it is also possible that homol-

ogy has been erased by gene losses in the ancestor of
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Box 1
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Genus level distribution of sex determination characteristics in
insects. The colored bars indicate the presence of a character in a
genus. The exterior ring indicates male heterogametic systems followed
by female heterogametic, homomorphic systems, and haplodiploid or
paternal genome elimination. The branching structure is based on
taxonomy and the figure incorporates data from 9,067 species
representing 2725 genera.  Data available from treeofsex.org.
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Drosophilid flies. The latter explanation finds indirect

support from three lines of evidence in concert. First, there

is considerable turnover of Y linked genes across the genus.

Only 3 of the 12 single copy Y-linked autosomal protein-

coding genes are conserved across all members of the genus

studied so far, except for the D. pseudoobscura lineage,

which shares none [21]. Second, the D. pseudoobscura
neo-Y is highly degenerated and heterochromatic, like

the D. melanogaster Y, yet is not homologous. In the

D. pseudoobscura lineage, the ancestral Drosophila X fused

to Muller element D (Figure 1) and the ancestral Y

reverted to autosomal inheritance by fusing to the dot

chromosome [29,30]. Despite being only 13–15 million

years old (compared to >60 for the ancestral Y) the neo-

Y of D. pseudoobscura retains only �15 genes (or pseudo-

genes) [18], suggesting that the ancestral Y of D. melanogaster
has had ample time to lose all of its X-linked homologs.

Finally, investigations of the neo-sex chromosomes in

D. miranda and D. albomicans suggest that Y-chromosomes

begin the decay process very early by down regulating gene

expression of Y-linked copies, and then rapidly begin to lose

genes [22,31,32]. In D. miranda the neo-Y, which formed by

a Y to autosome fusion approximately 1–2 million years ago,
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has already accumulated a large number of transposable

elements and 40% of the ancestral autosomal genes have

been pseudogenized or lost [23]. The data from Drosophila
are consistent with theoretical expectations and from

Y-chromosome observations in therian mammals where

the Y rapidly lost genes early in its evolution but has

remained stable and gained several genes that are exclu-

sively expressed in the male germline [15�].

Unlike evolutionary theory and observations surrounding

the decay of the Y, we have a relatively limited under-

standing of the factors that govern rates of Y chromosome

gain and loss (i.e. XO->XY or XY->XO transitions).

However, the mechanics of meiosis might play a role

[5�]. Analysis of all available Coleoptera sex chromosome

karyotype data (4724 karyotypes analyzed over a phylog-

eny with 1126 operational taxonomic units) shows that

species requiring chiasmatic meiosis gain and lose

Y-chromosomes much faster than species that evolve

alternative segregation mechanisms (e.g. achiasmatic

meiosis or asynaptic sex chromosomes). Based on this

observation Blackmon and Demuth proposed the fragile

Y hypothesis, suggesting that as recurrent selection to
www.sciencedirect.com
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Homology of homogametic sex chromosomes in insects. Horizontal bars indicate the sex chromosome in each species and are colored to reflect

the homologous Muller element(s). Branch labels 1–4 indicate X-autosome fusions discussed in the text. Data presented in the figure are based on

both whole genome sequencing and comparative genomic hybridization studies [35,36�,37��,57].
reduce recombination between the X and Y-chromosome

continually shrinks the pairing region, it increases the

probability of aneuploid gamete production (i.e. Y-chro-

mosome loss) in taxa that require XY chiasmata for proper

segregation during meiosis. The fragile Y’s predicted

association between meiotic pairing mechanisms and Y-

chromosome loss also appears to hold in mammals, but

with much more limited data. Testing the fragile Y

hypothesis in other insects remains a promising area for

research, but awaits more complete phylogenetic sam-

pling and information about meiotic machinery in addi-

tional groups.

X-chromosome evolution
Because X-chromosomes recombine in females, they do

not suffer the same mutational decay as Y-chromosomes

and are consequently better represented and assembled

in whole-genome sequencing projects. While they are
www.sciencedirect.com 
more like autosomes than Y-chromosomes, Xs also expe-

rience evolutionary pressures that shape their content

uniquely, such as the inequitable distribution between

males and females, and the need to compensate gene

expression levels for the loss of Y homologs (i.e. dosage

compensation, [33]). Perhaps the most striking discov-

eries over the last decade are that, 1) X chromosomes of

even closely related lineages may have little or no

homology, 2) transposable element (TE) invasion

may facilitate the evolution of dosage compensation,

and 3) even old X-chromosomes can return to autosomal

inheritance.

Within the genus Drosophila there are at least four neo-X

chromosome systems, each with unique origins

(Figure 1). The D. pseudoobscura X-autosome fusion noted

above is the oldest and has evolved full dosage compen-

sation using the same molecular mechanisms found on
Current Opinion in Insect Science 2015, 7:45–50
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the ancestral X (Figure 1.1). The more recent neo-X

chromosomes of D. miranda (1–2 mya) arose by a fusion

of the Y to Muller element C leaving the X to segregate as

two pieces (ancestral X + D as in D. pseudoobscura, and the

neo X = ancestral C; Figure 1.2). Interestingly, the variety

of ages among the three X-chromosome segments in

D. miranda indicates that early TE invasion provides

important regulatory sequences that are refined over time

to efficiently recruit the dosage compensation machinery

[34�]. Two other neo sex chromosome systems arose from

yet other fusions. In D. albomicans the X and Y both fused

to a single autosome containing Muller C + D elements

(�0.1 mya) [32] (Figure 1.3) and in D. americana there is

an X to Muller B fusion that is still segregating in natural

populations [35] (Figure 1.4). Looking more broadly, it

was recently shown that the ancestral X of Drosophila is

not even the ancestral X of Diptera. Rather, the Drosoph-
ila dot chromosome, or Muller element F, was the ances-

tral X but reverted to autosomal inheritance in Drosophila,

thus explaining many of the peculiar sex chromosome-

like features of the dot [36�].

Given the revolving door of X-chromosome evolution in

Diptera, and the overall turnover of sex chromosome

systems suggested in Box 1, perhaps it is not surprising

that the shared region of the D. melanogaster and Anopheles
gambiae X is not homologous to the X of the beetle

Tribolium castaneum or the Z of the silk moth Bombyx
mori, but in each case the X (or Z) is homologous to a

unique autosome in the other species [37��] (Figure 1).

Note that the lack of homology should not be interpreted

as evidence that chromosomal sex determination arose de
novo in Diptera, Coleoptera, and Lepidoptera; rather it is

presumably a product of the kinds of sex chromosome to

autosome fusions we observe in Drosophila playing out

over deeper time. The rarity of either hermaphroditism or

environmental sex determination in hexapods suggests

that the ancestor of all insects had genetic sex determi-

nation. Furthermore, the presence of XY systems in non-

insect hexapods and most early branching insect orders,

suggests that XY is the most likely ancestral sex determi-

nation mode in insects.

Despite the lack of homology among X chromosomes, we

might expect that similar evolutionary pressures would

produce convergent characteristics. However, among four

molecular characteristics of Drosophila X-chromosomes:

1) gene movement, 2) codon bias, 3) gene density, and 4)

sex-biased gene expression, only gene movement shows a

consistent pattern outside Diptera [37��]. Biased gene

movement from the X to autosomes is seen in all insect

X-chromosomes surveyed to date. The pattern is partic-

ularly strong for duplication by retrotransposition, but also

holds for DNA based duplications [37��,38,39,40,41] and

extends even to most mammals surveyed (e.g. [42]).

Autosomal duplicates tend to be more highly expressed

in the male germline than their X-linked precursors in
Current Opinion in Insect Science 2015, 7:45–50 
Drosophila spp., which fosters a hypothesis that genes

move off of the X to avoid meiotic sex chromosome

inactivation (MSCI) in the male germline [43]; however,

the presence of MSCI in Drosophila is presently contro-

versial [44–47] and is not known in other insects.

ZW systems
There are only two insect orders (Lepidoptera and Tri-

choptera) that have predominantly ZW sex chromosomes

and data relevant to their sex chromosome origins is

scarce. Trichoptera and the basal lineages of Lepidoptera

are all ZO whereas possessing a W chromosome arose

later and is characteristic of the ‘advanced’ Lepidoptera.

While the W chromosome in some taxa arose by fusion of

the ancestral Z to an autosome, in other taxa the origin of

the W is less clear [48,49]. Most of what we know about W

chromosome homology and evolution is based on fluores-

cent in situ hybridization (FISH) using whole-genome and

or microdissected W-chromatin based probes. These studies

demonstrate that W-chromosomes, like Y-chromosomes, are

mostly heterochromatic and can lack homology even within

families [50–52]; however, they are often asymmetric in that

they may show lack of homology to the Bombyx W, for

example, but they do not identify the neo-W’s autosomal

progenitor. We are aware of only one effort to directly

sequence a Lepidotera W-chromosome (Ephistia kuehniella)

and they found many diverse transposable elements but no

protein coding genes that would be useful for elucidating

origins [53�]. Interestingly, recent RNA-seq experiments in

silkworm discovered that the only transcripts generated by

the W encode a dominant female determining factor, Fem,

which is the precursor to a PIWI-interacting RNA [54].

Unlike the X, Y, and W chromosomes highlighted thus

far, the ancestral Z chromosome of Lepidoptera seems to

remain broadly conserved. However, this view relies on

shared Z-linkage across seven species and the silkworm

reference genome, which provides only limited evidence

[48]. The paucity of data for ZW species merits caution in

making strong conclusions. Indeed, a recent study incor-

porating FISH probes based on autosomal and Z linked

genes in silkworm, discovered that a neo-Z chromosome

arose by a fusion of the Z to Bombyx chromosome 15 in the

common ancestor of �700 pest species [55].

Conclusions
Our understanding of insect sex chromosome origins and

content is highly reliant on studies in Diptera; particularly

Drosophila where we have the most detailed genomic

data. Ironically, the rate of sex chromosome turnover

we see in Drosophila suggests that we should not overly

rely on them to make generalities about sex chromosomes

in the rest of insecta. Box 1 also reveals important biases

in what we know. For instance, there is a paucity of data

for female heterogametic taxa, which is partly an artifact

of the technical difficulty collecting karyotype data in

females and also because Lepidoptera have numerous
www.sciencedirect.com
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(2n = 60–62 is most common) holocentric chromosomes,

making cytogenetic distinction of Z and W difficult [48].

Going forward, the reduced cost of whole-genome se-

quencing is likely to rapidly improve what we know about

sex chromosomes. When genomes are sequenced from

both sexes we now have multiple strategies for using read

depth (e.g. [11,36�]) and or kmer frequencies [10] to

identify sex chromosome scaffolds. However, sex limited

genomes of the Y or W are likely to remain recalcitrant

until accurate, long-read sequencing is available. Creation

of the Tree of Sex Database offers access to sex determi-

nation data for over 20,000 species across the tree of life

[4��,56��]. Much of the data has never been analyzed in a

comparative framework and could also offer new insights

into the evolution of sex chromosomes (e.g. [5�]).
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