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The pace and direction of evolution in response to selection, drift, and mutation are governed by the genetic architecture that

underlies trait variation. Consequently, much of evolutionary theory is predicated on assumptions about whether genes can be

considered to act in isolation, or in the context of their genetic background. Evolutionary biologists have disagreed, sometimes

heatedly, over which assumptions best describe evolution in nature. Methods for estimating genetic architectures that favor

simpler (i.e., additive) models contribute to this debate. Here we address one important source of bias, model selection in line

cross analysis (LCA). LCA estimates genetic parameters conditional on the best model chosen from a vast model space using

relatively few line means. Current LCA approaches often favor simple models and ignore uncertainty in model choice. To address

these issues we introduce Software for Analysis of Genetic Architecture (SAGA), which comprehensively assesses the potential

model space, quantifies model selection uncertainty, and uses model weighted averaging to accurately estimate composite genetic

effects. Using simulated data and previously published LCA studies, we demonstrate the utility of SAGA to more accurately define

the components of complex genetic architectures, and show that traditional approaches have underestimated the importance of

epistasis.
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The genetic architecture of a trait is a description of how vari-

ation in genotypes map onto variation in phenotypes. Because

the details of this mapping govern how a trait will respond to

evolutionary forces, much of evolutionary theory is predicated

on assumptions about whether genetic architectures are sim-

ple or complex (reviewed in Wolf et al. 2000; Svensson and

Calsbeek 2012). As most textbooks will report, simple architec-

tures, in which all genetic variation is due to additive gene action

(i.e., heterozygotes have exactly intermediate value to either ho-

mozygote), provide the most efficient substrate for adaptation via

natural selection (Fisher 1941; Crow and Kimura 1970; Lande and

Arnold 1983; Lynch and Walsh 1998). However, more complex

architectures that include within and between locus interactions

(dominance and epistasis, respectively) can cause the available

additive genetic variance to increase or decrease, and thereby

accelerate or impede adaptation, even in the absence of addi-

tive gene action at any constituent locus (Goodnight 1988, 2000;

Falconer and Mackay 1996, p. 128; Wade 2000, 2002; Carter

et al. 2005; Carlborg et al. 2006). Genetic interactions may also

facilitate evolutionary phenomena such as the origin of sex and re-

combination (Charlesworth 1990; Barton 1995; Peters and Lively

1999), mating system evolution (Charlesworth and Charlesworth
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1990; Schierup and Christiansen 1996; Jacobs and Wade 2003),

reproductive isolation (Cabot et al. 1994; Orr and Turelli 2001;

Demuth and Wade 2005; Moehring et al. 2006), and developmen-

tal robustness and canalization (Rice 1998; Bergman and Siegal

2003; de Visser et al. 2003; Flatt 2005; Félix and Barkoulas 2015)

that are each difficult to explain with theory that omits epistasis

from the genetic architecture. There is also a broad correlation

in evolutionary theory in which simpler architectures are empha-

sized when trait variation is among individuals within a family or

population, but more complex architectures are emphasized as the

relatedness among potential mates decreases (Lynch 1991; Coyne

et al. 1997; Orr 2001; Demuth and Wade 2005). More specifically,

inbreeding depression and heterosis between closely related in-

dividuals are traditionally attributed to dominance effects (Bruce

1910; Crow 1948; Lande and Schemske 1985; Charlesworth and

Charlesworth 1999; but see Moorad and Wade 2005), a view

consistent with observations of linear relationship between in-

breeding and decline in trait mean (reviewed in Lynch and Walsh

1998; Byers and Waller 1999). In contrast, outcrossing depression

and speciation are typically attributed to the breakup of coad-

apted gene complexes, environment-dependent effects (Carson

and Templeton 1984; Fenster and Galloway 2000) and/or nega-

tive interactions between loci (Dobzhansky 1937; Muller 1940,

1942; Gavrilets 1997, 2003).

Debate over the relative importance of simple vs. complex

architectures in nature has persisted among evolutionary biolo-

gists for decades (Wright 1931; Fisher 1958; Coyne et al. 1997;

Wade and Goodnight 1998). It has been argued that reconciling the

long-standing debates about when complex genetic interactions

are important considerations for our understanding of evolution

requires relevant empirical measures of genetic architecture along

a continuum of divergence (Lynch 1991; Demuth and Wade 2005,

2006). However, efforts to empirically measure genetic architec-

tures are often laborious and suffer from methodological biases

against finding gene interactions (Demuth and Wade 2006). Our

purpose in the work presented below is to alleviate a major source

of bias associated with the line cross analysis approach to mea-

suring genetic architecture.

Line cross analysis (LCA) is a widely used quantitative genet-

ics method for estimating genetic architecture by partitioning a set

of mean phenotypes into their composite genetic effects (CGEs;

e.g., additive, dominance, and epistatic gene action). Originally

developed in efforts to understand the genetic architecture of traits

important to human agriculture (Mather and Jinks 1982), LCA

has also provided insights into the genetic basis of adaptation and

speciation (Armbruster et al. 1997; Lair et al. 1997; Edmands

1999; Galloway and Fenster 2001; Miller et al. 2003; Demuth

and Wade 2005, 2007a,b; Tymchuk et al. 2007; Fuller 2008;

Demuth et al. 2014). The LCA approach typically uses two

parental strains that have diverged in a phenotype of interest.

These parents are crossed, producing an F1, and subsequent

crosses (e.g., F2, backcross, reciprocals) are made to generate

groups that have different combinations of parental genes. We

refer to each of these groups as cohorts. Using a weighted least

squares regression with weights inversely proportional to the vari-

ance of the cohort means, the degree to which a phenotype is

determined by different CGEs may be estimated (Cavalli 1952;

Hayman 1958). It is important to keep in mind that LCA does not

identify specific genetic features; rather CGEs represent the net

effect of all genetic features contributing to the differences in the

phenotype of interest between the parental lines. Furthermore, be-

cause LCA requires multiple generations, any environmental fac-

tors that contribute to spurious covariances among cohort means

have the potential to confound estimates of genetic architecture.

Failure to inter-randomize the cohorts in experimental assays may

be an important source of faulty inference and deserves close at-

tention during experimental design.

The most widely implemented statistical approach to testing

among LCA models with different CGEs is called the joint-scaling

(J-S) test (essentially a forward variable selection weighted least

squares regression). Using this approach a simple additive model

is first fit and then additional higher order CGEs are added un-

til, based on the results of a likelihood ratio test, no significant

improvement in the model is achieved (Mather and Jinks 1982;

Lynch and Walsh 1998). This approach is common in studies of

both plants and animals (Edmands 1999; Schiffer et al. 2006; van

Heerwaarden et al. 2008; Bentz et al. 2011). Due to concerns that

this approach may not find the best model, a number of alternative

variable selection approaches have been implemented including

backward and stepwise variable selection (Gilchrist and Partridge

1999; Demuth and Wade 2007 b). Additionally, hybrid approaches

have been implemented using Akaike information criterion (AIC)

to choose a most parsimonious model from an a priori chosen sub-

set of potential models followed by the use of significance tests

to add or remove CGEs and arrive at a final “best” model (Bieri

and Kawecki 2003; Fritz et al. 2006; Fox et al. 2011). Finally, an

iterative approach using AIC to compare multiple small candidate

sets of models has been used to choose a single “best” model (Fox

et al. 2004).

There are several documented issues with the variable selec-

tion processes implemented in the J-S test and existing ad hoc

approaches (Whittingham et al. 2006): (1) Different variable se-

lection approaches (forward, backward, and stepwise) do not con-

sistently identify the same variables as important (Derksen and

Keselman 1992). (2) Parameter estimates under these approaches

are biased away from zero (Burnham and Anderson 2002). (3)

Calculating valid P-values is difficult due to multiple compar-

isons (Wilkinson 1979). (4) Hypothesis testing approaches place

an inappropriate focus on a single model ignoring the degree of

model uncertainty implied by the data (Burnham and Anderson
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2002). Finally, because the number of cohorts is often small rel-

ative to the number of CGEs being considered, the use of AIC

as a metric is inappropriate for line cross data and should be re-

placed with AICc (Hurvich and Tsai 1989). More broadly, the

often repeated aphorism that “all models are wrong, but some are

useful” suggests that the search for a single best model may often

be misguided (Box and Draper 1987). A more prudent approach

would be to evaluate all models that the data allow and identify

the useful one(s).

Following, we describe and demonstrate a full information-

theoretic (I-T) approach to model selection and parameter es-

timation for LCA that alleviates the difficulties associated with

previous approaches and provides additional understanding that is

not possible under a J-S, hybrid, or ad hoc approach. Our approach

leverages the finite sample size corrected version of the Akaike

information criterion (AICc) to explore all possible models and

make unbiased and, when appropriate, model-averaged estimates

of the contribution of CGEs to cohort means. We have developed

an R package: Software for the Analysis of Genetic Architecture

(SAGA) that makes this approach straightforward to implement.

The SAGA software is available from the R package repository

CRAN. We describe our approach and its performance on simu-

lated datasets as well as contrasting the results of this method to

those from the J-S test using 22 previously published datasets.

Method and Interpretation
The first step in LCA is the development of a C-matrix that de-

scribes the potential contribution of CGEs to cohort means. Two

versions of C-matrices have been widely used and have been

shown to have a linear relationship (Basford and De Lacy 1979).

We use a C-matrix that is scaled to the midparent mean (equiv-

alent to F�), and includes 23 potential CGEs (Table S1). By

maximizing the number of CGEs (many of which are normally

not explored), we reduce the risk that results are biased by the

selection of CGEs tested. For each CGE we have calculated co-

efficients for 24 potential crosses; each of which is divided into

male, female, or mixed sex cohorts.

Depending on the identity of the cohorts supplied, some

CGEs may not vary or may be perfectly correlated with one an-

other. Therefore, the first step in our approach is to reduce the

C-matrix to include only the CGEs that can be partitioned with

the available cohorts. Next, we generate all possible models that

have at most two fewer CGEs than the number of cohorts being

analyzed (number of cohorts—intercept—1). We use the existing

implementation of weighted least squares regression in the base R

package in the function GLM (R Development Core Team 2013).

Some CGEs may be either highly correlated or contain a linear

dependency (when one CGE can be described as a linear combi-

nation of one or more other CGEs). The GLM function will drop

the highest order CGE from a model if it is highly correlated with

a lower order CGE or if its inclusion creates a linear dependency.

When this occurs it would effectively create a duplicate lower or-

der model in the set being evaluated. If this occurs, we remove the

equation with the confounded CGEs from the set being evaluated

allowing the CGEs to be estimated independently by lower order

equations that are otherwise equivalent.

The function GLM returns the parameter and standard error

estimates conditional on the model as well as the AIC value for

the model. AIC scores have been used to evaluate LCA models

(Bieri and Kawecki 2003; Fox et al. 2004, 2011), but if the ratio

of the number of cohorts to the number of CGEs being evaluated

is less than 40, which will almost always be the case in LCA,

then AICc is preferable (Burnham and Andersen 1998). AICc

provides an appropriate trade-off between model complexity and

goodness of fit, and as sample size increases it converges on

AIC (McQuarrie and Tsai 1998). The higher penalty assessed for

additional parameters under AICc should help to reduce the risk

of including spurious variables and overfitting. We convert AIC

to AICc using equation (1), where n is the number of cohorts and

K is the number of parameters being estimated.

AICc = AIC + 2K (K + 1)

n − K − 1
(1)

Once all models have been evaluated, we calculate AICc differ-

ences (�AICc) using equation (2).

�AICci = AICci − AICcmin, (2)

where AICcmin is the minimum AICc score calculated across

all possible models and AICci is the AICc calculated for a specific

model. �AICc allows models to be ranked and is used in generat-

ing Akaike weights (wi ) using equation (3). The denominator in

equation (3) is the summation of the numerator across all possible

models being evaluated (R). The wi generated in this way will

sum to 1 and can be evaluated as evidence for whether a model is

correct.

wi = e−0.5×�AICci∑R
r = 1 e−0.5×�AICcr

(3)

If wi of the best model is 0.95 or greater, then we perform

parameter estimation under a single model. If no model reaches

this threshold, then we construct a 95% confidence set of models

that contains the minimum number of models whose wi sum to

0.95. We then compute model-averaged results for the 95% con-

fidence set. To calculate model-averaged parameter estimates and

unconditional standard errors, we recalculate wi for each model

performing the summation in the denominator of equation (3)

across all models in the confidence set. The model weighted pa-

rameter estimates (̂θ̄) are then calculated using equation (4), where

wi is the recalculated model weight and θ̂i is the parameter es-
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timate from the model; the product of these values is summed

across all models (R) in the confidence set.

̂̄θ =
R∑

i = 1

wi × θ̂i (4)

Standard error estimates that are not conditional on any one

model are calculated using equation (5).

ŝe
(̂
θ̄
)

=
R∑

i = 1

wi

√
v̂ar

(
θ̂i |gi

) +
(
θ̂i −̂̄θ)2

(5)

The term v̂ar (θ̂i |gi ) represents the conditional variance of a

parameter estimate under an individual model whereas (θ̂i −̂̄θ)2

is simply the squared deviation of the parameter estimate under a

given model from the model weighted average for that parameter.

Our I-T approach also provides estimates of variable impor-

tance calculated by summing wi of all models (R) in which a CGE

occurs (eq. 6).

vi =
R∑

i = 1

wi (6)

The vi score provides evidence that a CGE is important even

if its contribution is small or poorly defined.

For the remainder of the article, we denote CGEs using a

capital letter for the source of an effect: autosomal (A), cytotype

(C), maternal effect (M), X chromosome (X), Y chromosome (Y);

and we use lower case to denote the type of effect: additive (a) or

dominance (d). Two-locus epistatic CGEs are denoted by joining

the single locus notations (e.g., AaAd is autosomal additive by

autosomal dominance epistasis).

INTERPRETING RESULTS OF AN I-T APPROACH

TO LCA

Interpreting LCA results using an I-T approach involves consid-

eration of a number of factors not present in the traditional J-S

approach. In our experience, few LCA datasets strongly support a

single model of genetic architecture, yet goodness-of-fit statistics

and parameter estimates are typically only reported for the best

model. A major advance of SAGA, and the I-T approach more

generally, is the ability to quantify the degree of model selection

uncertainty. In general, the lower the Akaike weight of the best

model and or the more models contained in the 95% confidence

set, the greater the degree of model selection uncertainty. Using

our software, users can plot the distribution of Akaike weights

across all possible models to allow a simple visual interpretation

of model selection uncertainty.

In cases in which there is considerable model selection un-

certainty, vi scores often provide a strong indication of the impor-

tance of a specific CGE’s role in the genetic architecture of a trait.

This occurs because even when a 95% confidence set contains

many models, one or a handful of CGEs may be present in the

majority of them. In these situations, we can infer that the CGE

is likely to be important, but we may have little confidence in

estimating its true magnitude or sign because it depends on the

other components in the model.

After assessing model selection uncertainty and vi scores,

we can evaluate the CGE estimates and their unconditional error

estimates. Due to the inherent biases in previous J-S approaches

noted above, our model-averaged parameter estimates will often

be of lower magnitude and because the error now properly in-

cludes model selection uncertainty it will often be higher. SAGA

returns a table containing the model-averaged parameter estimate

and unconditional standard error for all CGEs included in the 95%

confidence set of models.

VALIDATING THE I-T APPROACH

To evaluate our I-T approach to LCA, we created 1250 simu-

lated datasets under five simulation conditions based on the sam-

ple sizes, midparent mean, and standard deviations observed in a

study of sperm receptacle length in Drosophila mojavensis (Miller

et al. 2003). The first four simulation conditions are based on a

simple genetic architecture in which the midparent mean is 4.58

and there are three CGEs (Aa, Ma, AaAd) that each contribute

to variation among line means with equal magnitude. The magni-

tude of each CGE was 0.25, 0.5, 1, and 2 in conditions 1 through

4, respectively, and 250 datasets were simulated under each of

these conditions. Although the architecture is simple in all cases,

by varying the magnitude of the CGEs we simulate data that pose

difficulty for traditional approaches that must not only specify the

best model but accurately estimate the values of the CGEs. We

also generated an additional 250 datasets in which the true CGEs

are expected to be difficult to estimate because the genetic archi-

tecture is complex. For these simulations the midparent mean is

also 4.58, but six CGEs (Aa, Ad, Ma, AaAa, AaAd, AdAd) con-

tribute to line means, all with magnitude = 1. For each simulated

dataset, we included the following mixed sex cohorts: P1, P2, F1

(P1 × P2), rF1 (P2 × P1), (P1 × F1), (rF1 × P1), (P2 × F1),

(rF1 × P2); parents are indicated as sire × dam. We introduced

sampling error to the simulated cohort means by randomly sam-

pling 30 values from a normal distribution centered on the known

cohort mean (specified by model parameters), and a standard de-

viation equal to 0.087 (the highest standard deviation recorded in

the D. mojavensis dataset). The CGEs that we can evaluate with

these cohorts are as follows: Aa, Ad, Ca, Ma, Md, AaAa, AaAd,

AdAd, CaAa, and CaAd. These 10 effects allow for more than

800 possible underlying models.

We also compare the results of our I-T approach to the results

from Miller et al. (2003), and our own LCA of hybrids among

Tribolium castaneum populations (Demuth and Wade 2007a,b)

and Silene species (Demuth et al. 2014). The LCA of coevolution
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between male sperm length and female sperm receptacle length

(empirical datasets 1 and 2, respectively) among populations of

D. mojavensis (Miller et al. 2003) was included because it is one

of the few studies in which the authors published the underlying

data for sexed cohorts. Analyzing the sexes separately allows us

to include sex chromosome effects, which greatly expands the

potential model space. This increase in model space is a problem

for traditional LCA approaches, but less so for the I-T approach

in SAGA.

From previous work by Demuth and colleagues, we reana-

lyze the genetic architecture of divergence among a cosmopoli-

tan sample of T. castaneum interpopulation crosses (empirical

datasets 3–17). We include 15 population pairs in which the num-

ber of offspring was measured, based on the original analysis,

we expect to harbor a wide range of genetic architectures. We

also reanalyze the recent LCA of interspecific hybrids between

S. latifolia and S. diclinus (Demuth et al. 2014). This study an-

alyzed male and female fertility (ovule and pollen production)

and viability (offspring number for each sex) in pure parental

crosses and interspecific hybrids (empirical datasets 18–22);

Table S2 provides detailed information on all empirical datasets.

In all cases, the original studies implemented a J-S approach using

X2 to assess model fit and likelihood ratio tests to add or remove

CGEs from the overall model; we contrast these to results with

the I-T approach implemented in SAGA.

All analyses were computed using our software package

SAGA version 1.0 loaded with RStudio version 0.98.976 run-

ning R version 3.02 on a MacBookPro with 4 GB of 2600 MHz

RAM and a 2.5 GHz processor (RStudio 2012; R Development

Core Team 2013). Our R package is available from the CRAN

repository and includes a vignette (supplement text 1) that guides

users through an analysis of two empirical datasets.

Results
SIMULATIONS STUDIES

To evaluate the performance of our I-T approach using simulated

data, we report the accuracy of parameter estimates, as well as

performance in identification of CGEs included in the generating

model. In simulated datasets with simple architectures in which

we varied the magnitude of CGEs, SAGA accurately estimated

the true values in all cases (Fig. 1A-D). In fact, even when the

magnitude of the CGEs was only 5% of the mean, the estimate

of the magnitude of the CGEs was within 2% of the true value

(Fig. 1A). A key benefit of SAGA is that the parameter estimates

are accurate despite substantial overall model selection uncer-

tainty. The true model used to generate the simulated data was

only identified as the best model in 73, 71, 73, and 69% of the

replicates among datasets simulated under conditions 1–4, respec-

tively. The fact that SAGA very accurately estimates parameter

values while simultaneously failing to always identify the correct

model as best is likely due to CGEs that have small parameter

estimates, large standard errors, and low vi but by chance explain

enough stochastic variation in cohort means to be included in a

subset of high scoring models.

Because analysis of the simple architecture with effect sizes

of 2 (simulation condition 4) had the lowest success (69%) in

identifying the generating model as best, we used it to investigate

the impact of model misspecification on parameter estimates. We

parsed the results from the 250 replicates based on whether the

true generating model was identified as the best model (Fig. 1E;

N = 174) or not (Fig. 1F; N = 76). Even in the 76 datasets

in which the generating model was not identified as the best

model, the individual parameter estimates remain accurate. There

were no cases in which the estimates for CGEs excluded from

the generating model were as large as the estimates for CGEs

included in the generating model.

The last set of simulated data offers the opportunity to eval-

uate a more complex genetic architecture in which the number of

CGEs generating the cohort means is approaching the maximum

number of estimable parameters (8 cohorts – [6 CGEs + inter-

cept] = 1 degree of freedom). Our analysis of these data shows

that SAGA can clearly distinguish the CGEs generating the line

means based on vi scores. Table 1 shows the minimum vi for a

CGE included in the generating model was 0.659 whereas the

maximum vi for a CGE excluded from the generating model was

0.02. We find that most CGEs are accurately estimated. In par-

ticular, Aa, Ma, and AaAd have mean estimates of 0.994, 1.000,

and 0.998, respectively, and vi scores of 0.993, 0.997, and 0.996

respectively. The three other CGEs included in the generating

model (Ad, AaAa, AdAd) have more variable estimates rang-

ing from 0.663 to 1.173 due to a linear dependency between the

CGEs that precludes their joint estimation with the cohorts sim-

ulated. Thus, the parameter estimates for Ad, AaAa, and AdAd

are generated by fewer models (those that are missing at least one

of the CGEs). Despite this, the parameter estimates and the vi

scores for these three CGEs are all at least one order of magnitude

greater than the estimates for CGEs that were not included in the

generating model (Table 1).

ANALYSIS OF EMPIRICAL DATA

Analysis of the 22 empirical datasets in SAGA revealed the antic-

ipated advantages of using an I-T approach: (1) successfully find-

ing complex models in which J-S fails; (2) providing a clear signal

of model selection uncertainty; (3) identifying CGEs that are often

ignored; and (4) providing parameter and error estimates uncon-

ditional on any single model. The results for all empirical datasets

are reported in Table 2. Below we briefly report results from the

analyses of several exemplar datasets that illustrate the range of

model selection uncertainty we have found in empirical data.
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Figure 1. Analysis of four simulated datasets with varying magnitude of CGE contribution. Each plot shows the distribution of model

weighted parameter estimates from 250 replicates. In each the left most curve is for CGEs with a true value of 0, the middle curve is for

CGEs that generated the line means, and the right most curve is for the estimate of the overall mean. In all cases, the generating model

included Aa, Ma, and AaAd. Dashed lines indicate the generating parameter values. Effect sizes: A = 0.25, B = 0.5, C = 1, D = 2. Iterations

that correctly (E) or incorrectly (F) identified the generating model are shown separately for simulations in which effect size is 2.

Analysis of female sperm receptacle length (empirical

dataset 1) provides an example with low model selection un-

certainty. Although no single model had a wi sufficient to ignore

model selection uncertainty (95% confidence set includes 82 mod-

els with the highest wi = 0.234), two CGEs exhibit vi scores much

higher than any others. These two CGEs (Aa and CaXa) had the

largest estimated magnitudes of 0.0324 ± 0.0615 and 0.214 ±
0.0787 and high vi scores of 0.98 and 0.89, respectively. All other

CGEs had parameter estimates at least sevenfold smaller and had

standard errors overlapping zero (Fig. 2).

Analysis of male sperm length (empirical dataset 2) provides

an example of intermediate model selection uncertainty. In this

case, no single model was found to be best (95% confidence set in-

cludes 302 models with the highest wi = 0.154). However, a clear

signal from vi scores suggests that Aa and CaYa are important

contributors to line means (0.91 and 0.79 vi scores, respectively).

These two CGEs also had the largest estimated magnitudes of

0.0495 ± 0.0133 and 0.0420 ± 0.0184 (Fig. 3). Most other CGEs

estimated for this dataset had either low vi scores, or the effect

size estimate was comparatively small –0.0123 ± 0.0077. This is

an example of the ability of the I-T approach to recover complex

genetic architectures that were missed when a single best model

was selected. The intermediate level of uncertainty in which no

single model is defined as far superior (Table 2) but a clear signal

as to which CGEs are important was the most common result in

our empirical analyses, found in datasets 1–10, 12, and 14–22.

The LCA for crosses between T. castaneum populations from

Malaysia and Croatia (empirical dataset 13) is an example in

which we find relatively high model selection uncertainty. The

95% confidence set of models required the inclusion of 363 mod-

els and the highest wi = 0.034 (Table 2). The vi scores were also

low, with the highest being assigned to Ca and CaAd both with
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Table 1. Mean variable importance (vi ) and parameter estimates for 250 datasets generated under simulation condition 5.

Variable Variable importance Estimate/true value Unconditional SE

Mean 1.000 4.746/4.58 0.773
Aa 0.993 0.994/1.00 0.016
Ad 0.659 0.662/1.00 1.545
Ca 0.005 0.007/0.00 0.007
Ma 0.997 1.000/1.00 0.013
Md 0.005 0.000/0.00 0.005
AaAa 0.66 0.827/1.00 0.774
AaAd 0.996 0.998/1.00 0.035
AdAd 0.67 1.173/1.00 0.774
CaAa 0.02 0.007/0.00 0.004
CaAd 0.014 –0.007/0.00 0.003

Bold lines indicate variables included in the generating model.

Figure 2. Model weighted parameter estimates for sperm receptacle length in D. mojavensis. Bars are colored based on vi scores and

indicate the magnitude of the genetic effects indicated on the x-axis. Whiskers indicate the unconditional standard errors.

scores of 0.43. Furthermore, the standard error of the estimates

for all CGEs overlap zero (Fig. 4). This dataset illustrates that

in some cases the degree of model selection uncertainty can be

so high that LCA is not able to recover the genetic architecture

of the trait of interest with the cohorts available. The only other

empirical dataset in our analyses that showed a similar level of

uncertainty was dataset 11, which contained 310 models in the

95% confidence set and all CGE estimates failed to exclude zero.

Finally, analyses of pollen production and male offspring

number (empirical datasets 19 and 21; Table 2) in hybrids be-

tween S. latifolia and S. diclinis represent two examples in which

there was extreme model uncertainty. Compared to the original

J-S analyses these two datasets yielded the same and different es-

timates of genetic architecture respectively. The types of crosses

in the Silene study were carefully chosen to maximize the number

of CGEs that could be tested and consequently resulted in a model

space of greater than 100,000 potential genetic architectures. The

95% confidence set of models for pollen production (empirical

dataset 19) included 2524 models and the highest wi = 0.047

(Table 2). Despite the high model uncertainty, the CGEs with

highest vi scores (AaAd and XaAa) were the same as those iden-

tified by the J-S approach and the effect size estimates from the

two approaches were statistically indistinguishable. In contrast,

analysis of male offspring number (empirical dataset 21), which

also had very high model uncertainty (3650 models in the 95%

confidence set with highest wi = 0.14), did not identify the exact

CGEs identified as significant using the “right” model from the

J-S approach. The I-T and J-S approaches both identify Ad and

AaYa as important, but with different effect size estimates. The

I-T approach also identified AdAd, CaAa, and CaYa as important,
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Figure 3. Model weighted parameter estimates for the genetic architecture underlying sperm length in D. mojavensis. Bars are colored

based on vi scores and indicate the magnitude of the genetic effects indicated on the x-axis. Whiskers indicate the unconditional standard

errors. Only CGEs with vi of at least 0.15 are included.

Figure 4. Model weighted parameter estimates illustrating relatively high model selection uncertainty for the genetic architecture

underlying reproductive isolation in crosses between T. castaneum populations from Malaysia and Croatia (empirical dataset 13). Bars are

colored based on vi scores and indicate the magnitude of the genetic effects indicated on the x-axis. Whiskers indicate the unconditional

standard errors.

whereas J-S identified Ca, AaAa, XaAa, and Ya. This final exam-

ple is a case in which J-S with a vast number of models that have

similar fits to the data coupled with a complex genetic architecture

simply gets it wrong. Fortunately, the I-T and J-S approaches con-

verge when removing the crosses where male number was likely

to be low due to sex chromosome segregation problems in their

fathers (F2d and BC2b; see Demuth et al. 2014). The reduced

dataset (empirical dataset 22) had modest model uncertainty (307

models, with highest wi = 0.11) and both approaches identify

AaAa, AaAd, and AdAd as the CGEs contributing to the genetic

architecture.

SOFTWARE PERFORMANCE

All analyses attempted in our study were completed in reason-

able times on a standard laptop described in the methods section.

Evaluation of the 250 replicates of all of the simulated datasets

required a total of 12 min. Due to the nature of memory usage

in R, performance on the datasets that contain independent data

for males and females was initially a concern because it allows

for a far greater number of models. For instance, the analysis of

sperm receptacle length in D. mojavensis females required eval-

uation of approximately 13,000 models, whereas the analysis of

sperm length in D. mojavensis males required evaluation of 63,000

4 2 8 EVOLUTION FEBRUARY 2016
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Figure 5. Visual depictions of model space for the genetic architecture of reproductive isolation in T. castaneum. Each box represents a

genetic architecture model is colored to reflect its wi . The scale ranges from lightest for models with wi of zero to darkest for those with

the maximum value for the analysis. Models are organized with the simplest model at the lower left and increase in complexity upward

and to the left, that is, all one-parameter models are on the bottom row followed by two-parameter models when the right edge of

the graph is reached a second row is added on top of the first. (A) Results from the analysis of dataset 4 showing low model selection

uncertainty. (B) Results from the analysis of dataset 6 showing considerable model selection uncertainty.

models. These analyses required only 2 and 5 min, respectively,

to complete. The most computationally intensive search among

our analyses (Silene hybrid female number) required evaluation

of 192,984 models and took 49 min.

Discussion
Comparing the original results from of all 22 empirical datasets

with those from SAGA suggests that the I-T approach is more

successful than traditional approaches at identifying higher order

CGEs. For example, nine of the datasets had one or more epistatic

CGE (11 in total) not identified with the J-S test that had a vi

> 0.5 in the I-T analysis. One datasets had maternal effects not

identified with the J-S test that had vi > 0.5 in the I-T analysis, and

only one dataset had a nonepistatic autosomal CGE identified with

the I-T approach but not with the J-S test. These results indicate

that the traditional version of the J-S test may underestimate the

contribution of epistatic interactions in determining phenotypes.

Finding a larger role for epistasis in empirical datasets is

particularly important since, as highlighted in the introduction, it

affects our perception of how adaptation and speciation are likely

to occur in nature. For instance, if epistasis is a common feature

of the genetic architecture of variation within species, then small

variations in allele frequency among populations with limited

gene flow may result in rapid genetic divergence among those

populations even if selective pressures are similar (Goodnight

1987, 1988; Wade and Goodnight 1998). Because not all types of

epistasis are equally disposed to fostering population divergence

and or speciation (Demuth and Wade 2005), the methods devel-

oped in SAGA are especially important because they provide a

much more powerful way to differentiate among all the compo-

nents of complex genetic architectures. The utility of SAGA and

LCA will be particularly powerful for systems in which there is

a continuum of divergence among populations as well as species

that are in the so called “Goldilocks zone” (Demuth et al. 2014) in

which viable hybrids can still be produced. In such systems LCA

allows for the investigation of how architectures change as traits

diverge and reproductive isolation arises between species.

There has been concern that comparing the large number

of possible models in LCA experiments may lead to spurious

results (Bieri and Kawecki 2003). This concern seems to trace

back to discussions of “data dredging” (Burnham and Andersen

1998; Burnham and Anderson 2002). Described in the context of

ecological studies, data dredging is the process of measuring and

searching for significance among a great many variables without

a clear a priori decision of what variables may be biologically

important. Burnham and Anderson encourage careful selection

of a reduced set of variables based on a sound understanding of

the biology involved and by doing this reducing the total number

of models that must be evaluated (2002). In LCA, the variables

are known CGEs, and each one describes a biologically plausible

component of the genetic architecture underlying the phenotypes

of the observed cohorts. The goal of LCA, finding the set of CGEs

that best explains the observed data, can best be accomplished if

we examine all possible combinations of CGEs. Assuming the

necessary cohorts are available, the I-T approach accomplishes

this goal.
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Existing approaches to LCA share two common shortcom-

ings: (1) there is no framework to adequately describe model

selection uncertainty, and (2) there is no way to quantify the

impact of model uncertainty on the estimated contributions of

individual CGEs. The importance of model selection uncertainty

is highlighted by our analysis of empirical data in which 21 of 22

datasets showed nontrivial model selection uncertainty. The abil-

ity to quantify model selection uncertainty is perhaps one of the

most important benefits of turning to an I-T approach. Previous

analyses (even those that implemented AIC to choose a model)

have presented only results conditional on specific models, and

have largely ignored uncertainty in model selection. Furthermore,

hypothesis-testing approaches do not provide us with a way to

rank models relative to one another. For instance the result of the

J-S approach cannot tell us if one or many models are almost as

good as the best model identified. Akaike weights and evidence

ratios offer a natural way to do this.

The maximum wi of all models tested as well as the num-

ber of models required to produce a 95% confidence set are two

simple metrics that quantify the degree of uncertainty in model

selection. The maximum wi we recorded ranged from 0.02 to

0.98 with a mean maximum wi = 0.21. The number of mod-

els required to construct a 95% confidence model set varied

accordingly, ranging from 82 in the case of sperm receptacle

length in D. mojavensis (dataset 1) to 5385 models for the num-

ber of females produced in crosses between species of Silene

(dataset 20, Table 2). We illustrate examples in which model se-

lection uncertainty is low (dataset 4; Fig. 5A) and high (dataset 6;

Fig. 5B). The model uncertainty metrics and visual depiction of

model space allow for a more realistic interpretation of LCA ex-

periments than previous approaches.

By implementing an I-T approach and examining all models

possible given the data, we also resolve the issue of finding the

best possible model. The potential of failing to find the best model

was illustrated in our analysis of dataset 1 in which we found a

model that outperformed all other possible models that the J-S test

had failed to find. However, the ultimate goal of LCA is to find the

composite genetic effects responsible for a phenotype. Previous

methods depend on identifying the best model and interpreting

the CGEs that are included in that model (conditional effects).

With SAGA we get accurate estimates of the CGEs that are not

dependent on the ability to specify one overall model as best, and

our analysis of simulated datasets indicates that even when we

are unable to identify the generating model our I-T approach is

still able to identify the generating CGEs. The I-T approach to

LCA we have presented eliminates issues in existing approaches

and offers a more powerful and nuanced examination of the ge-

netic architecture of quantitative traits. Furthermore, estimates of

CGEs are unbiased and confidence intervals incorporate model

selection uncertainty, a characteristic impossible under previous

approaches. Finally, the ability to visualize the distribution of

Akaike weights of all possible models can provide a strong indi-

cation of whether LCA of the phenotype of interest is informative.

We recommend that future studies assess model uncertainty and

shift away from making estimates that are conditional on a single

model.
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