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Introduction

Line cross analysis (LCA), or partitioning the contribution of composite genetic effects (CGEs), to the mean
phenotype of cohorts is widely used to investigate the genetic architecture of traits. This approach uses two
parental strains which have diverged in a phenotype of interest. These parents are crossed, producing an
F1, and subsequent crosses (e.g. F2, backcross, reciprocals) are made to generate groups that have different
combinations of parental genes. We refer to each of these groups as cohorts. Using a weighted least squares
regression with weights inversely proportional to the variance of the cohort means, the degree to which a
phenotype is determined by different CGEs (e.g. additive, dominance, and epistatic gene action) may be
estimated [1, 2]. Traditionally LCA has been accomplished using the joint-scaling test, essentially forward
variable selection weighted least squares regression. However this approach has a number of documented
problems [3]. A full information-theoretic (I-T) approach to model selection and parameter estimation
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alleviates difficulties associated with previous approaches and provides additional understanding that is not
possible under older approaches such as the joint-scaling test [4]. SAGA provides a full I-T approach to LCA
that leverages the finite sample size corrected version of the Akaike information criterion (AICc) to explore
all possible models and make unbiased and, when appropriate, model averaged estimates of the contribution
of CGEs to cohort means. SAGA includes eight functions and seven empirical datasets.

Functions:

• AnalyzeCrossesMM: Primary function that generates and tests all models of genetic architecture
possible for a given set of cohorts.

• EvaluateModel: Returns parameter estimates conditional on a single model.

• VisModelSpace: Plots the distribution of Akaike weights across model space.

• DisplayCmatrix: Loads the selected c-matrix as dataframe.

• plotObserved: provides a traditional plot of observed line cross analysis data as well as the expectation
under an additive model.

• plot.genarch: An S3 method for plotting genarch objects. Can be used to produce publication quality
plots with control over most aspects of the plot including the CGEs included.

• cohortID: Loads a dataframe with cohort IDs and descriptions allowing users to look up cohorts and
prepare data for analysis.

• AICtoMW: Converts a vector of ∆AIC or ∆AICc values to model weights.

Data:

• ban.osa: Number of offspring from crosses involving Tribolium castaneum from Ecuador and Japan [5]

• dar.bho: Number of offspring from crosses involving Tribolium castaneum from Tanzania and India [5]

• per.inf : Number of offspring from crosses involving Tribolium castaneum from Peru and Portugal [5]

• sin.cro: Number of offspring from crosses involving Tribolium castaneum from Malaysia and Croatia [5]

• PH: Height data for crosses involving strains of Nicotiana rustica [2].

• SL: Sperm length data for crosses between disjunct populations of Drosophila mojavensis [6].

• SR: Sperm receptacle length data for crosses between disjunct populations of Drosophila mojavensis

[6].

Mathematical Approach

We use the function GLM from the base R package to perform weighted least square regression [7]. GLM returns
the parameter and standard error estimates conditional on the model as well as the AIC value for the model.
We convert AIC to AICc using equation 1. Where n is the number of cohorts and K is the number of
parameters being estimated.

Equation 1:

AICc = AIC +
2K(K + 1)

n − K − 1

We then calculate AICc differences (∆AICc) using equation 2.
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Equation 2:

∆AICci = AICci − AICcmin

Where ∆AICcmin is the minimum AICc score calculated across all possible models and AICci is the AICc

calculated for a specific model. ∆AICc is used in generating Akaike weights (wi) using equation 3. The
denominator in this equation is the summation of the numerator across all possible models being evaluated
(R).

Equation 3:

wi =
e−0.5×∆AICci

∑R

r=1
e−0.5×∆AICcr

Under the default settings, if wi of the best model is 0.9 or greater then SAGA will perform parameter
estimation under a single model. If no model reaches this threshold then we construct a 95% confidence set
of models that contains the minimum number of models whose wi sum to 0.95. To calculate model averaged
parameter estimates and unconditional standard errors we recalculate wi for each model performing the
summation in the denominator of equation 3 across all models in the confidence set. The model weighted
parameter estimates are then calculated using equation 4 where wi is the recalculated model weight and θ̂i is
the parameter estimate from the model; the product of these values is summed across all models R in the
confidence set. This summation includes those models excluding the parameter being estimated. We choose
this version of the equation becuase the inclusion of a model without the CGE is evidence for it having zero
contribution and so should reduce the estimate of its magnitude.

Equation 4:

ˆ̄
θ =

R
∑

i=1

wi × θ̂i

Standard error estimates that are unconditional on any one model are calculated using equation 5. The

term ˆvar
(

θ̂i|gi

)

represents the conditional variance of a parameter estimate under an individual model while
(

θ̂i − ˆ̄
θ
)2

is simply the squared deviation of the parameter estimate under a given model from the model

weighted average for that parameter.

Equation 5:

ŝe
(

ˆ̄
θ
)

=

R
∑

i=1

wi

√

ˆvar
(

θ̂i|gi

)

+
(

θ̂i − ˆ̄
θ
)2

Finally variable importance vi is calculated by summing wi of all models in the confidence set R in which a
CGE occurs (Eq. 6).

Equation 6:
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vi =
R

∑

i=1

wi

Installation

A stable tested version of SAGA is available from the CRAN repository or the most recent version may be
installed from github using the devtools package:

Installing from CRAN

install.packages("SAGA")

Installing from github

library(devtools)

install_github("coleoguy/SAGA", build_vignettes = TRUE)

Fitting LCA Models

Matrix of composite genetic effects

The supplied c-matrices of composite genetic effects

The first step in analysis of line cross data is choice of a c-matrix that describes the expected contribution
of different types of gene action to mean cohort phenotypes. By default SAGA will use a c-matrix that is
designed for a species with XY sex determination and scaled to the midparent mean (equivalent to F∞), and
includes 23 potential CGEs. For each CGE it includes coefficients for 24 potential crosses; each of which is
divided into male, female, or mixed sex cohorts. The c-matrix has 72 rows and the row numbers are used to
identify the cohorts being used in an experiment. The function DisplayCmatrix is available so you can decide
if the supplied version has all of the CGEs and cohorts necessary.

# print the c-matrix to the terminal

DisplayCmatrix(table = "XY")

Table 1. The first 15 rows and 13 columns of the c-matrix supplied for species with XY sex determination.

X.sire.x.dam. ID M Aa Ad Xa Xd Ya Ca Mea Med AaAa AaAd

1 P1:daughters 1 1 1 0.0 1.00 0.00 0.0 1 1 0 1 0
2 P1:sons 2 1 1 0.0 1.00 0.00 1.0 1 1 0 1 0
3 P1:mixed 3 1 1 0.0 1.00 0.00 0.5 1 1 0 1 0
4 P2:daughters 4 1 -1 0.0 -1.00 0.00 0.0 -1 -1 0 1 0
5 P2:sons 5 1 -1 0.0 -1.00 0.00 -1.0 -1 -1 0 1 0
6 P2:mixed 6 1 -1 0.0 -1.00 0.00 -0.5 -1 -1 0 1 0
7 F1 (P2xP1):daughters 7 1 0 1.0 0.00 1.00 0.0 1 1 0 0 0
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X.sire.x.dam. ID M Aa Ad Xa Xd Ya Ca Mea Med AaAa AaAd

8 F1 (P2xP1):sons 8 1 0 1.0 1.00 0.00 -1.0 1 1 0 0 0
9 F1 (P2xP1):mixed 9 1 0 1.0 0.50 0.50 -0.5 1 1 0 0 0
10 rF1 (P1xP2):daughters 10 1 0 1.0 0.00 1.00 0.0 -1 -1 0 0 0
11 rF1 (P1xP2):sons 11 1 0 1.0 -1.00 0.00 1.0 -1 -1 0 0 0
12 rF1 (P1xP2):mixed 12 1 0 1.0 -0.50 0.50 0.5 -1 -1 0 0 0
13 F2a (F1xF1):daughters 13 1 0 0.5 0.50 0.50 0.0 1 0 1 0 0
14 F2a (F1xF1):sons 14 1 0 0.5 0.00 0.00 -1.0 1 0 1 0 0
15 F2a (F1xF1):mixed 15 1 0 0.5 0.25 0.25 -0.5 1 0 1 0 0

Editing the c-matrix

Some studies might need a different c-matrix than what is supplied with SAGA. One easy way to handle this
is to use one of the supplied c-matrices and edit it. First we will load the XY c-matrix:

NEW.cmat <- SAGA::DisplayCmatrix(table = "XY")

Now lets print the CGEs so we can determine which ones we need:

colnames(NEW.cmat)

## [1] "M" "Aa" "Ad" "Xa" "Xd" "Ya" "Ca" "Mea" "Med" "AaAa"

## [11] "AaAd" "AdAd" "XaAa" "XaAd" "XdAa" "XdAd" "YaAa" "YaAd" "YaXa" "CaAa"

## [21] "CaAd" "CaXa" "CaXd" "CaYa"

We will reduce the c-matrix to only CGEs that do not have sex chromosomes in them:

NEW.cmat <- NEW.cmat[, c(1:3,6:12,20:21)]

Now we have a c-matrix appropriate for an ESD species that can be used as normal:

AnalyzeCrossesMM(data, Cmatrix=NEW.cmat)

Prepare LCA data for input

Data that will be analyzed with SAGA should be in a dataframe with three columns:

1) id of the cohort - to match the appropriate row number of the c-matrix you are using

2) mean phenotype measure of the cohort

3) standard error of the cohort's mean phenotype.

Row names are ignored and will not effect the analysis.
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SAGA comes with several empirical datasets already appropriately formatted. To illustrate the format we
can load data on the number offspring produced by crosses involving Tribolium castaneum from Peru and
Portugal [6].

data(per.inf, package="SAGA")

Table 2. per.inf data illustrating the format required for analysis with SAGA.

Cohort ID Mean SE

3 33.62500 2.31407
6 42.50000 4.31774
9 44.80000 6.93830

12 37.25000 8.22977
15 23.85714 4.52205
21 25.85714 2.88203
18 33.25000 5.46008
24 24.12500 3.28110
27 35.12500 6.18303
30 54.66667 6.55574
33 43.50000 7.23303
36 43.12500 5.65824
45 19.20000 4.16413
48 13.00000 2.94958
39 47.66667 11.06245
42 47.66667 11.20020
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To look up the cohorts ID numbers use the function cohortID. This will return a data frame with the ID
number for each type of cohort. Parents are listed in parentheses and are in the order sire x dam. Remember
that these numbers only apply to the supplied c-matrices. If you alter it or supply your own then your cohort
ID numbers should match the appropriate rows of your own c-matrix.

cohortID()

Table 3. cohort ID lookup table.

ID cohorts ID cohorts

1 P1:daughters 37 BC2a (P2xF1):daughters
2 P1:sons 38 BC2a (P2xF1):sons
3 P1:mixed 39 BC2a (P2xF1):mixed
4 P2:daughters 40 BC2b (P2xrF1):daughters
5 P2:sons 41 BC2b (P2xrF1):sons
6 P2:mixed 42 BC2b (P2xrF1):mixed
7 F1 (P2xP1):daughters 43 rBC2a(F1xP2):daughters
8 F1 (P2xP1):sons 44 rBC2a(F1xP2):sons
9 F1 (P2xP1):mixed 45 rBC2a(F1xP2):mixed
10 rF1 (P1xP2):daughters 46 rBC2b(rF1xP2):daughters
11 rF1 (P1xP2):sons 47 rBC2b(rF1xP2):sons
12 rF1 (P1xP2):mixed 48 rBC2b(rF1xP2):mixed
13 F2a (F1xF1):daughters 49 2BC1b(BC1bxP1):daughters
14 F2a (F1xF1):sons 50 2BC1b(BC1bxP1):sons
15 F2a (F1xF1):mixed 51 2BC1b(BC1bxP1):mixed
16 F2b (rF1xF1):daughters 52 2BC2a(BC2axP2):daughters
17 F2b (rF1xF1):sons 53 2BC2a(BC2axP2):sons
18 F2b (rF1xF1):mixed 54 2BC2a(BC2axP2):mixed
19 rF2b (F1xrF1):daughters 55 F1p(pooled)rF1&F1:daughters
20 rF2b (F1xrF1):sons 56 F1p(pooled)rF1&F1:sons
21 rF2b (F1xrF1):mixed 57 F1p(pooled)rF1&F1:mixed
22 F2c (rF1xrF1):daughters 58 rBC1ap(P1xF1p):daughters
23 F2c (rF1xrF1):sons 59 rBC1ap(P1xF1p):sons
24 F2c (rF1xrF1):mixed 60 rBC1ap(P1xF1p):mixed
25 BC1a (F1xP1):daughters 61 BC1ap (F1pxP1):daughters
26 BC1a (F1xP1):sons 62 BC1ap (F1pxP1):sons
27 BC1a (F1xP1):mixed 63 BC1ap (F1pxP1):mixed
28 BC1b (rF1xP1):daughters 64 rBC2ap(P2xF1p):daughters
29 BC1b (rF1xP1):sons 65 rBC2ap(P2xF1p):sons
30 BC1b (rF1xP1):mixed 66 rBC2ap(P2xF1p):mixed
31 rBC1a(P1xF1):daughters 67 BC2ap (F1pxP2):daughters
32 rBC1a(P1xF1):sons 68 BC2ap (F1pxP2):sons
33 rBC1a(P1xF1):mixed 69 BC2ap (F1pxP2):mixed
34 rBC1b(P1xrF1):daughters 70 2rBC2a(rBC2axP2):daughters
35 rBC1b(P1xrF1):sons 71 2rBC2a(rBC2axP2):sons
36 rBC1b(P1xrF1):mixed 72 2rBC2a(rBC2axP2):mixed
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Analyze models

Once data is prepared as above you perform the analysis with the function AnalyzeCrossesMM. This function
has a variety of arguments to allow fine control of the analysis:

General Arguments

• data: a data frame with the first three columns:

1) id of the cohort this must mach the coefficient row of the c-matrix

2) mean phenotype measure of the cohort

3) Standard error of the cohort’s mean phenotype

• Cmatrix: A text string used to select the c-matrix to be used in the analysis. Included options are
“XY”, “XO”, “ZW”, “ZO”, or “esd”. A user matrix can also be supplied as a dataframe.

• model.sum: This is the sum of the probability of the models to be included in the confidence set.

• even.sex: A logical by default it is false. It should be set as true if either sexed cohorts are included
or if mixed sex cohorts are included but have equal numbers of males and females.

Arguments to help with large datasets

• max.pars: Optional parameter limiting the size of the equations evaluated. See discussion below on
the size of model space.

• max.models: By default set to 300,000. This is the maximum number of fitted models to return from
the function. This is included as an option to allow analysis of large model space on computers with
limited RAM. This argument only impacts the number of models stored in the returned genarch object.
Internally all models are still fit and the results are based on all models and not the subset of models
returned.

Arguments to control plotting

• graph: Logical indicating whether a plot of results should be produced.

• cex.axis: Expansion factor for numeric axis labels.

• cex.names: Expansion factor for name labels.

• cex.main: Expansion factor for main title.

This will return a list of the class “genarch”. The list has four elements:

• models: a list containing the weighted least squares solution for all models tested.

• estimates: a data frame containing Model Weighted Average for each parameter and its unconditional
standard error.

• daicc: a vector of the ∆AICc scores for all models tested.

• varimp: a data frame containing the vi scores for composite effects

As SAGA is analyzing the data it will print the composite effects being tested as well as progress in analyzing
models to the terminal, and if graph=TRUE a plot of the primary results of the analysis.
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Mixed sex cohorts

The argument even.sex in AnalyzeCrossesMM is important to consider. This is set as FALSE by default.
This builds in the assumption that neither sex specific cohorts nor cohorts with an equal number of males
and females measured are included in the data being analyzed. Lacking either single sex cohorts or cohorts of
equal sex ratio will greatly reduce the number of CGEs that can be investigated. This argument is also only
used when the supplied c-matrix is being used. If you are using a custom c-matrix you will need to insure
that you have calculated coefficients that match your cohorts with regard to sex or ratio of sexes.

The size of model space

Using the default settings SAGA will evaluate every possible model that has fewer parameters than the
number of cohorts included. In almost all studies we can evaluate every possible model given the cohorts
available. However, in cases where many different types of sexed cohorts (i.e. more than 15) are available and
the species have sex chromosomes the number of models can become prohibitive. One solution to this is to
use the max.pars argument. This will limit the size of the equations evaluated. Mixed model analyses are
relatively robust to the exclusion of models with low probability. Because of this we recommend that you
begin with an intermediate value like 6. This will allow SAGA to analyze every possible equation with 6 or
fewer parameters. Next begin increasing the max.pars argument, if the inferred architecture is stable as you
increase it from 7, 8, 9, 10 and the number of models included in the confidence set is not increasing then it
means that none of these additional models are better than simpler models already analyzed. In this situation
we believe that the answer based on all equations below with less than 10 parameters is likely reliable. We
have found no empirical datasets that place high support on equations with greater than 6 CGEs.

9



Multi-model inference example 1

In this example we analyze the number of offspring that result from a cross of Tribolium castaneum from
Peru and Portugal. This analysis indicates that none of the models tested has a wi greater than 95%. Figure
1 displays the model averaged parameter estimation from equation 4, and unconditional standard errors
calculated in equation 5 are indicated with whiskers on each bar. The colors of the bars reflects the vi

calculated in equation 6.:

# we will need the plotrix package for plotting

library(plotrix)

results <- SAGA::AnalyzeCrossesMM(per.inf, graph=T, cex.names=.8)

## The composite genetic effects that will be tested are:

## Aa, Ad, Ca, Mea, Med, AaAa, AaAd, AdAd, CaAa, CaAd

##

## Generating Models..........

## 500

## 1000

## AICc weights were used to select the minimum number of models whose weights sum

## to greater than 95% this model set includes 219 model(s)

Aa Ad Ca Mea Med AaAa AaAd AdAd CaAa

Model Weighted Averages and Unc. SE

0
20

40
60

80

0.00

0.25

0.50

0.75

1

Var. Imp.

Figure 1: Model averaged estimate of genetic architecture.
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Multi-model inference example 2

Now we can load a different dataset to demonstrate what happens when there is less model selection
uncertainty. This dataset is from a study of sperm receptacle length measured in crosses between disjunct
populations of Drosophila mojavensis from Arizona [6].

library(plotrix)

#Sperm receptacle length in Drosophila mojavensis

data(SR, package="SAGA")

#Because we are using cohorts where we know the distribution of sexes we set sexed=T.

results2 <- SAGA::AnalyzeCrossesMM(SR, even.sex=T, graph=T, cex.names=.7)

## The following composite effects cannot be estimated with the line

## means available because they estimate identical quantities to

## lower order effects:

## Xd, XaAa, XdAa, XdAd, CaXd

##

## The composite genetic effects that will be tested are:

## Aa, Ad, Xa, Ca, Mea, Med, AaAa, AaAd, AdAd, XaAd, CaAa, CaAd, CaXa

##

## Since there are 7098 possible models this may take a bit:

## Generating Models........

## 500

## 1000

## 1500

## 2000

## 2500

## 3000

## 3500

## 4000

## 4500

## 5000

## 5500

## 6000

## 6500

## 7000

## 1519 models were removed due to high covariances

## or linear relationships between predictor variables.

## The remaining 5579 models have been evaluated.

##

##

## AICc weights were used to select the minimum number of models whose weights sum

## to greater than 95% this model set includes 82 model(s)
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Aa Ad Xa Ca Mea Med AaAa AaAd AdAd XaAd CaAa CaAd CaXa

Model Weighted Averages and Unc. SE
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Figure 2: Unconditional estimate of genetic architecture.
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Figure two illustrates that though no single model has a wi sufficient to ignore model selection uncertainty,
the evidence ratio (wi of the best model divided by the next best wi) is over 2 for the best model and two
CGEs exhibit vi scores of much higher than any others. In this case autosomal additive and cytotype by X
chromosome additive epistasis have vi of .98 and .89 respectively. Additionaly as figure 2 shows no other
CGEs have estimates that exclude zero, and if we look at the 10 best models we find that it is Aa and CaXa
that are present in all of them. The other included CGEs explain very little of the variation and we would
interpret only Aa and CaXa as being important in this trait.

Table 3 The ten best models the CGEs included and model weights.

model CGEs wi

25 Aa CaXa .23
154 Aa CaXa XaAd .11
112 Aa CaXa Xa .09
142 Aa CaXa AaAa .07
129 Aa CaXa Mea .03
102 Aa CaXa Ad .03
147 Aa CaXa AaAd .02
570 Aa CaXa XaAd AaAa .02
121 Aa CaXa Ca .02
156 Aa CaXa CaAa .02

Plotting Results

Custom plots

To plot something differently than the default plot returned from the analysis; access the results stored in
the genarch object. First we can simply look at what is returned from AnalyzeCrossesMM by looking at the
names of the elements in this list.

names(results)

## [1] "models" "estimates" "daicc" "varimp"

This shows us that we can access the parameter estimates in element two.

results[[2]]

## M Aa Ad Ca Mea

## Model Weighted Average "21.461" "-1.687" "7.908" "0.123" "0.617"

## Unconditional Standard Error "12.947" "3.101" "18.548" "0.595" "1.522"

## Med AaAa AaAd AdAd CaAa

## Model Weighted Average "0.96" "14.065" "49.186" "6.431" "-0.276"

## Unconditional Standard Error "2.988" "14.977" "15.792" "11.478" "1.845"

## CaAd

## Model Weighted Average "1.59"

## Unconditional Standard Error "2.955"
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We can also access the variable importances in the fourth element of the genarch object

results[[4]]

## [,1] [,2]

## [1,] "Aa" "0.258743993553868"

## [2,] "Ad" "0.371220175749559"

## [3,] "Ca" "0.150976324361842"

## [4,] "Mea" "0.171646401865819"

## [5,] "Med" "0.239313659551563"

## [6,] "AaAa" "0.615806053631536"

## [7,] "AaAd" "0.958558314566902"

## [8,] "AdAd" "0.293109981553278"

## [9,] "CaAa" "0.168600431505884"

## [10,] "CaAd" "0.252521439479819"

Lets look at how we might plot these using base R functions:

# here we extract the 4 largest composite effects found in the first analysis

estimates <- as.numeric(results[[2]][1, c(3, 7, 8, 9)])

names(estimates) <- colnames(results[[2]])[c(3, 7, 8, 9)]

barplot(estimates, main = "Estimate for composite effects",

names.arg = names(estimates))

Ad AaAa AaAd AdAd

Estimate for composite effects

0
20

40

Figure 3: Subset of model averaged estimate of genetic architecture.

To alleviate the need to manually build a plot from scratch like figure 3 we have provided an S3 plot method
for genarch objects. It has many useful built-in options such as restricting the plot to only include those
CGEs that have a vi score over a cutoff that you set. It also allows you to adjust the axis labels and color
palette. For instance, figures 4-6 show alternative plots of the same results shown in figure 1.

plot(results)

plot(results, min.vi=.25)
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Figure 4: The standard full plot returned from the analysis

Aa Ad AaAa AaAd AdAd CaAd
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Figure 5: Now we have reduced the plot to include just those CGEs with a vi of at least .25
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plot(results, maxval = 85, min.vi = .253, main = "A nicer plot", viridis = T)

Aa Ad AaAa AaAd AdAd

A nicer plot
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80
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Importance

Figure 6: Now have switched to the viridis color pallete to make it color blind friendly, adjusted the Y axis,
and changed the main title.
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Plots of individual models

Finally, although few datasets support inference from any one model SAGA does provide the ability to
investigate the results of individual models. For instance by accessing the ∆AICc scores saved in the third
element of the genarch object we could find the best two models and then plot these using the function
EvaluateModel. To illustrate this lets find the best two models from the Tribolium dataset in example 1 and
plot them just to see how they differ.

# first lets find the best two models

order(results[[3]])[1:2]

## [1] 166 110

We plot the inference conditional on the best fit model below:

SAGA::EvaluateModel(results, 166, cex.names=.7, cex.main=.7)

Mean AaAa AaAd AdAd

Single Model Means and Cond. SE

0
30

Figure 7: Estimates conditional on model 166

Next the evaluation of the second best model:

SAGA::EvaluateModel(results, 110, cex.names=.7, cex.main=.7)

Mean Ad AaAa AaAd

Single Model Means and Cond. SE

0
30

Figure 8: Estimates conditional on model 110

Here we can see that the top two models both include 3 composite genetic effects, and in both cases the
strongest effect is assigned to autosomal additive by autosomal dominance epistasis. We can also see that
the first model includes autosomal dominance by dominance epistasis while in the second this is replaced by
simple autosomal dominance.
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Plots of observed data

In LCA papers it is customary to plot the observed phenotype measure of each cohort as a function of percent
genome of one parental line. These graphs are then overlayed with the expectation based on a purely additive
model. SAGA includes the plotting function plotObserved to produce these graphs. These plots have an X
axis representing the amount of parent 1 genome and a Y axis representing the phenotype measure. They
also include the expectation for the phenotype assuming a purely additive model. Currently this function has
only been tested with the supplied c-matrices.
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Figure 9: Observed line means.
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Assesing Model Uncertainty

The relative fit of models to the data can be explored using the function ‘VisModelSpace’. This function
will plot a box for each model tested and will color it based on its wi. The models are organized from the
simplest model (autosomal additive) in the bottom left hand corner and increase in complexity from left to
right (first all one parameter models then all two parameter models etc.) once the right hand side of the plot
is reached a second row is added above the first. Only models evaluated and stored in the genarch object are
plotted - for instance a model removed due to a colinearity will not be represented in the plot. To illustrate
the differences in model space we can plot the results of the two analyses stored in results and results2.
First lets look at the Tribolium analysis which indicated a nontrivial level of model selection uncertainty. The
results from this analysis are stored in results

VisModelSpace(results, cex.u=1.6)
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Figure 10: Distribution of akaike weights across model space for Tribolium dataset.

This plot shows us that there are a number of models of varying complexity that have very similar akaike
weights, and this dataset highlights why our understanding of the genetic architecture should not be based
on any single model.
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Next lets create the same plot but this time for the Drosophila sperm receptacle length dataset which indicated
very little model selection uncertainty. The results from our analysis of this dataset are stored in results2.

VisModelSpace(results2, cex.u=.4)

Increasing Model Complexity →

In
cr

ea
si

ng
 M

od
el

 C
om

pl
ex

ity
→

0.00

0.236
Akaike Weights

Figure 11: Distribution of akaike weights across model space for Drosophila sperm receptacle length.

Conclusion

Users should consider the presence of linear dependencies in c-matrices. Depending on your choice of cohorts
some CGEs will likely be linearly dependent. This means that they can not be distinguished from each other
and can not be estimated simultaneously. SAGA deals with this first by dropping any higher order CGEs that
are perfectly correlated with a lower order effect from the c-matrix being used. However some combinations
of CGEs may still be highly correlated (colinear) with each other. SAGA deals with this by dropping any
model that includes the CGEs that are highly correlated. The importance and magnitude of each particular
CGE involved in the colinearity is estimated only by the subset of models where it still appears. In our
experience a strong signal of the importance of CGEs remains though the parameter estimates become less
accurate and the variable importance scores will be lower. When variables with high vi scores do not appear
jointly in the equations included in the confidence set, it is a strong indication that there is a colinearity, and
warrants additional investigation. Often the only solution to this problem will be a careful examination of the
c-matrix to determine what type of additional cohort(s) could be measured to most effectively demonstrate
the difference in the contributions of the CGEs that are confounded.

Despite the improvements provided by implementing an I-T approach in SAGA, we would caution users that
in our analysis of simulated datasets we have found that spurious variables are often included in models that
are part of the confidence set, (i.e. table3). These spurious variables are likely included because they are
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able to explain some stochastic noise in the dataset. However, these are usually easily identified by small
parameter estimates with standard errors overlapping zero.

In reporting the results of line cross analysis experiments, we recommend reporting estimates and standard
errors from model averaged results unless a single model has greater than 95% wi. It is also important to
report vi scores since these give an indication of our certainty that a particular composite genetic effect is
important in the genetic architecture of the trait in question. Finally, although one of the benefits of our
approach is a move away from strict arbitrarily defined p-values we have found that as a rule of thumb across
all simulated datasets that we have analyzed vi scores of greater than 50% have only been associated with
CGEs that were included in the generating model.
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