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1  | INTRODUC TION

Identifying the genetic architecture underlying traits is a central 
goal of evolutionary biologists (Demuth, Flanagan, & Delph, 2014; 
Fuchsberger et al., 2016; Kitano et al., 2009; Küpper et al., 2016), 
as well as animal and plant breeders (Gall, 1975; Pooni, Jinks, & 
de Toledo, 1985; Singh, Bhullar, & Gill, 1986). The genetic archi-
tecture of a trait may, at its simplest, be described by the action 
of a single locus whose effect can be decomposed into additive 
and dominance components. However, rarely does this simple 

view describe traits of interest to biologists. For instance, empir-
ical studies have found that life-history traits, complex diseases 
and hybrid incompatibilities are all frequently impacted by com-
plex genetic architectures that include epistasis (i.e. interactions 
among loci) (Demuth & Wade, 2007; Pandey et al., 2012; Roff & 
Emerson, 2006). The importance of these epistatic interactions 
where the impact of an allele at one locus is dependent on the ge-
netic background (i.e. alleles present at other loci) has been a topic 
of contention since the dawn of the modern synthesis (Fisher, 
1958; Wright, 1931). Many of the possible roles of epistatic 
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Abstract
Genetic architecture fundamentally affects the way that traits evolve. However, the 
mapping of genotype to phenotype includes complex interactions with the environ-
ment or even the sex of an organism that can modulate the expressed phenotype. 
Line-cross analysis is a powerful quantitative genetics method to infer genetic archi-
tecture by analysing the mean phenotype value of two diverged strains and a series 
of subsequent crosses and backcrosses. However, it has been difficult to account for 
complex interactions with the environment or sex within this framework. We have 
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gene by sex interactions. Using extensive simulation studies and reanalysis of empiri-
cal data, we show that our approach can account for both unintended environmental 
variation when crosses cannot be reared in a common garden and can be used to test 
for the presence of gene by environment or gene by sex interactions. In analyses that 
fail to account for environmental variation between crosses, we find that line-cross 
analysis has low power and high false-positive rates. However, we illustrate that ac-
counting for environmental variation allows for the inference of adaptive divergence, 
and that accounting for sex differences in phenotypes allows practitioners to infer 
the genetic architecture of sexual dimorphism.
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variation in the evolutionary dynamics of traits are clear math-
ematically (Goodnight, 1988; Wade & Goodnight, 1998; Wolf, 
Brodie, Cheverud, Moore, & Wade, 1998). However, substantial 
disagreement remains about how important epistasis is in nature 
and the course of adaptation and speciation (Cheverud & Routman, 
1996; Coyne, Barton, & Turelli, 1997; Peck, Ellner, & Gould, 1998; 
Turelli & Barton, 2006). One cause of this unresolved debate is 
variation in the methods we use to infer genetic architecture.

One of the first and most widely used methods of exploring 
genetic architecture is the partitioning of additive and dominance 
variance based on phenotypic variance and covariance of relatives 
(Falconer & Mackay, 1989). This approach has been successful in 
predicting short-term response to selection within lines or strains, 
but variance partitioning of this type is not well designed to esti-
mate epistatic effects (Falconer & Mackay, 1989). With the advent of 
QTL and later GWAS, explicit estimates of epistatic effects became 
possible. However, while technological and computational advance-
ments have allowed the application of GWAS and QTL studies to 
a continually increasing number of systems, these approaches are 
not without their own set of problems (Visscher et al., 2017). For 
instance, even if we are only interested in additive effects, these 
methods are tasked with performing thousands of tests with only 
a limited sample size. This statistical challenge introduces problems 
with regard to false positives, bias in types of architecture investi-
gated and the effect size necessary for reliable inference (Donnelly, 
2008; Korte & Farlow, 2013; Rockman, 2012; Wei, Hemani, & Haley, 
2014).

QTL and GWAS methods were developed to identify the location 
of genes that impact a trait. In contrast, line-cross analysis (LCA) is an 
alternative method that dispenses with the goal of locus identifica-
tion and instead focuses on identification of the trait architecture or 
mode of gene action (i.e. additive, dominance, epistasis) that under-
lies a trait. In LCA, two parental strains are crossed creating an F1. 
This F1 is then used to generate subsequent backcrosses. Depending 
on the genetic architecture of interest, reciprocal crosses may also 
be generated. In each of these crosses, or cohorts, the phenotype is 
measured and we are able to partition differences in the means of 
cohorts into additive, dominance and epistatic components (Cavalli, 
1952; Hayman, 1958; Mather & Jinks, 1982). With this approach, we 
dispense with the goal of identifying nucleotides or genes of inter-
est and instead focus on the net composite genetic effect (CGE) of 
all loci that influence a trait. In many LCA experiments, the focus 
is on simple CGEs (e.g. additive, dominance and the three types of 
interactions among these). These interactions: additive by additive, 
additive by dominance and dominance by dominance can capture 
variation in line means best explained by different patterns of epi-
static interactions (Brodie, Wade, & Wolf, 2000). However, with 
adequately designed experiments, much more complex genetic ar-
chitectures can be investigated. For instance, if males and females 
are measured separately or in equal numbers, additive and domi-
nance effects may be further partitioned into either autosomal addi-
tive, autosomal dominance, X chromosome additive, X chromosome 
dominance and Y chromosome additive (Demuth et al., 2014; Miller, 

Starmer, & Pitnick, 2003). Although we discuss XY systems, LCA and 
our implementation thereof is capable of dealing with XY or ZW sex 
chromosome systems as well as systems without sex chromosomes 
(Blackmon & Demuth, 2016). One weakness of LCA is that it esti-
mates a net effect, meaning that loci with the same mode of gene 
action (e.g. additive) but with opposite direction of effect will cancel 
out and reduce the signal for that CGE. This should make LCA infer-
ence conservative but prone to type II errors. In the past, LCA was 
hampered due to the sheer number of biologically realistic potential 
combinations of genetic effects and the computational and model 
selection problems this created (Demuth & Wade, 2006; Mundry & 
Nunn, 2008). However, a recently developed information theoretic 
approach with model averaging can make LCA a powerful and statis-
tically conservative tool for inferring complex genetic architectures 
(Blackmon & Demuth, 2016; van Heerwaarden & Sgrò, 2017).

Despite being developed over six decades ago and being ex-
tended recently, several challenges continue to limit the applica-
tion of LCA to empirical data. (a) The construction of a C-matrix (a 
matrix of coefficients describing the opportunity for CGEs to im-
pact the mean phenotype of a cohort) is the cornerstone of an LCA 
(Demuth & Wade, 2006). However, the construction of the C-matrix 
can be a challenge due to its sheer size and can bias downstream 
results if only some of the possible CGEs are included. (b) While it 
has long been recognized that environmental interactions could be 
incorporated into an LCA framework, no existing software provides 
practitioners with a simple way to do this (Bulmer, 1980; Rundle & 
Whitlock, 2001), and this is despite broad interest in G × E interac-
tions (Egan & Funk, 2009; Rundle, 2002). (c) No existing framework 
is available to incorporate both male and female data in analyses 
that focus on traits that are sexually dimorphic. Despite abundant 
empirical evidence that the sex of an individual and the alleles, it 
carries can interact and potentially result in sexual dimorphism 
(Ledón-Rettig, Zattara, & Moczek, 2017; Ober, Loisel, & Gilad, 2008; 
Poissant, Wilson, & Coltman, 2010; Weiss, Pan, Abney, & Ober, 
2006; Wolak, 2013). (d) Finally, we lack a broad understanding of 
the potential biases that may result from LCA in the presence of un-
intended environmental variation (e.g. differences in temperature or 
humidity within an incubator or greenhouse).

We solved these problems by extending traditional LCA ap-
proaches in several ways (implemented in the open source R pack-
age SAGA), conducting extensive simulation studies and reanalysing 
empirical data. We solve the difficulty of C-matrix construction by 
providing users with a simple data input format (Table 1) where users 
describe their cohorts and the software applies an algorithm to con-
struct the C-matrix appropriate for the experiment. By extending the 
construction of the C-matrix to include an environmental effect as 
first described by Bulmer (1980), we have removed the previous bar-
rier to analyses of gene by environment interactions. Likewise, we use 
a similar approach to account for sex by gene interactions facilitating 
the analysis of sexual dimorphism. Finally, we use this improved ver-
sion of the R package SAGA to perform extensive simulation testing 
and reanalysis of published data to evaluate the perils and promise of 
the inclusion of environmental and sex effects. Briefly, we show that 



     |  3ARMSTRONG et al.

the inclusion of an environmental variable can greatly increase the 
power and versatility of LCA to uncover the genetic architecture of 
traits without inflating false-positive rates. Furthermore, we show the 
potential danger of undocumented environmental variation. We find 
that among-cohort environmental variation can lead to excessive false 
positives. Finally, we show that the same approach that we use to in-
corporate environmental variation can also be successfully applied to 
reveal the genetic architecture of adaptive divergence and sexual di-
morphism. Taken together, the theoretical extensions that we provide 
in our R package SAGA should make LCA a more flexible and easily 
used tool for evolutionary biologists. Our simulation results under-
score the great importance of careful experimental design to eliminate 
among-family differences in environmental conditions. When this is 
impossible, the extensions we provide allow researchers to include a 
measured or even unmeasured environmental variable that may be 
confounding the analysis of genetic architecture.

2  | MATERIAL S AND METHODS

2.1 | Weighted least squares

The math that underlies an LCA is a weighted least squares regres-
sion, and we can represent our model of the genetic architecture as 
the linear model (1).

Here, y represents the vector of observed cohort means, C is the 
matrix that describes the opportunity for each CGE to impact the 
phenotype of a cohort, β is the vector of parameters to be estimated 

that describe the degree to which each CGE is responsible for the 
observed cohort means, and e is a vector of the random errors asso-
ciated with the means of each cohort. In the weighted least squares 
approach, we then find the estimate of the parameters 𝛽  that mini-
mizes the weighted sum of squares (2).

Here, V is the variance–covariance matrix of e. In LCA, V is a diag-
onal matrix with the standard errors of cohort means along the diag-
onal. This scales each cohort's contribution to the sum of squares by 
the certainty of the cohort mean. When few or large effect loci are 
responsible for differences in the phenotype of interest, variation in 
relatedness among members of a cohort could increase variance and 
reduce certainty in the cohort mean. The less certain a cohort mean, 
the less the contribution from that cohort to the sum of squares. The 
parameter estimates 𝛽  are

In our implementation, we use the R function glm (part of the 
core R stats package) to perform the maximum-likelihood weighted 
least squares regression and calculate the AIC of each possible 
model. A detailed description of the process of using these results 
in multimodel inference has been discussed in depth in the past 
(Blackmon & Demuth, 2016).

2.2 | C-matrix generation

The development of an appropriate C-matrix that represents the 
potential contribution of genetic effects on the mean phenotypes 
of cohorts is the first step in an LCA experiment. The accuracy 
and completeness of this matrix are central to performing LCA 
in an unbiased fashion. To eliminate errors in the construction of 
C-matrices, our software takes user input describing the crosses 
performed and uses algorithms to fill a C-matrix matching the us-
er's data. Briefly, the user supplies the data that includes sire and 
dam identity for each cross (Table 1). Then, to produce a C-matrix 
from this data, we first fill in the rows representing the diverged 
parental strains (we refer to these throughout as P1 and P2). 
These two strains are assumed to be homozygous for alleles that 
cause divergence in the trait of interest. Though the assumption 
of homozygosity applies only to those loci that impact the trait 
of interest, this assumption may be violated in some experiments. 
Violations of this assumption have not been studied but are likely 
to cause a poor fit between the expected contribution of CGEs 
among cohorts and the measured phenotypes leading to reduced 
power. If we define P1 as the strain with the larger phenotype 
measure and P2 as the strain with the smaller phenotype measure, 
we can assign coefficients for additive effects as positive one for 
P1 and negative one for P2. Because these two cohorts are pre-
sumed homozygous at any loci of interest, we assign a coefficient 
of zero for dominance effects. Using this approach, we can also 
assign coefficients for cytotype, X chromosome, Y chromosome 

(1)y=C�+e

(2)(y−C�)TV−1(y−C�)

(3)𝛽= (CTV−1C)−1CTV−1y

TABLE  1 Example of a typical data set that a user would supply. 
The cohort column describes the names assigned to each cohort in 
the experiment. P1 and P2 should be used to describe the two 
parental strains whereas other names can be chosen by the user to 
best describe the crosses. The mean and SE columns describe the 
phenotype measured in each cohort. The sex column should 
contain “U,” “E,” “M” or “F” to indicate that the measured cohort 
had an unequal sex ratio, equal sex ratio, was composed of all males 
or all females, respectively. The sire and dam columns describe the 
row of the table to which the sire and dam belonged. For instance, 
the F1 cohort (shaded row) was produced using males from table 
row 2 (P2) and females from table row 1 (P1) and the phenotype 
was measured in an unequal number of males and females. This 
annotation is sufficient for the construction of an accurate C-matrix

Cohort Mean SE Sex env Sire Dam

P1 20.8 6.47 U 35 1 1

P2 24.5 8.98 U 35 2 2

F1 42.0 6.27 U 35 2 1

rF1 31.7 7.30 U 35 1 2

F2a 25.7 5.99 U 35 3 3

F2b 25.47 5.89 U 35 3 4

rF2a 38.42 4.60 U 35 4 3

rF2b 34.74 5.63 U 35 4 4
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and other effects (a full C-matrix showing 34 possible genetic  
effects (9 simple CGEs and 25 epistatic CGEs) for 16 typical co-
horts is given in Table S1). To facilitate the calculation of subse-
quent cohorts, we also assign and track the proportion of the 
genome that originates from parental strain P2 (one for P2 and 
zero for P1). Likewise, a similar value is calculated and tracked for 
the X chromosomes and the Y chromosome. It is important to note 
that these values assigned for the X and Y chromosome are for the 
sex-limited portion of these chromosomes and not the pseudoau-
tosomal region. Any phenotypic differences determined by loci in 
the pseudoautosomal region will be largely inferred as an autoso-
mal effect if the genetic distance from the sex-determining locus 
is large. With the C-matrix rows for P1 and P2 filled as described 
above, we can begin filling other rows using a series of formulas.

To calculate the coefficient for the autosomal additive effect (Aa) 
we transform the proportion of the cohorts genome that originates 
from P2 onto the range (−1, 1) (4).

SP2 is the proportion of the sire's genome that comes from the P2 
line whereas DP2 is the proportion of the dam's genome that comes 
from the P2 line. Our software applies a modified version of this for-
mula in the case of sex chromosome effects that correctly accounts 
for the unequal inheritance of sex chromosomes among males and 
females. For instance, to calculate the X chromosome additive effect 
(Xa), we use (5) for females and (6) for males.

Similarly, SXP2 is the proportion of the sire's genome that comes 
from the P2 line whereas DXP2 is the proportion of the dam's genome 
that comes from the P2 line. In cases where a cohort is represented 
by an equal number of males and females, Xa is calculated as the 
mean of Equations (5) and (6).

The autosomal dominance (Ad) coefficient represents the prob-
ability that a randomly chosen site in the genome will be heterozy-
gous for alleles from the two parental strains.

On the right side of (7), the first term provides the probability 
that the sire provides a P2 allele and the dam provides a P1 allele, 
whereas the second term represents the alternative, where the dam 
is providing the P2 allele and the sire is providing the P1 allele. This 
effectively represents the two ways that a heterozygote can occur. 
This equation can also be simplified to (8).

For the case of X chromosome dominance effects in females, we 
can use this same formula but substitute the SXP2 for SP2 and DXP2 
for DP2 yielding (9).

Since it has no opportunity to contribute to the male phenotype, 
Xd is calculated as one half of Equation 9 in cohorts that contain 
equal numbers of males and females.

For Y chromosome, cytotype and mitochondrial effects, we 
carry down these uniparentally inherited values from the appropri-
ate parents (under the assumption of no heteroplasmy).

One of the essential extensions that we provide to LCA is the 
ability of the user to supply multiple values for each cohort. For in-
stance, the user could supply the mean phenotype value for both 
males and females separately. Alternatively, a user might raise ge-
netically identical cohorts in different environmental conditions 
and provide each of these individually in their input data. We incor-
porate an environmental variable supplied by the user by rescaling 
the measured environmental value for each cohort on the interval  
(−1, 1) using (10).

where max(vi … vn) is the maximum value measured for the envi-
ronmental variable and min(vi … vn) is the minimum value measured 
for the environmental variable. In doing this, we can create a new 
column in the C-matrix that allows us to infer any simple environ-
mental effects. Our approach assumes that the environmental 
variable is either binary discrete or continuous with an impact on 
phenotype that is linear. In cases where this is violated, the vari-
able could first be transformed onto a scale where it behaves in 
a more linear fashion. With autosomal additive, autosomal domi-
nance, X, Y, cytotype and environment coefficient effects calcu-
lated, all possible epistatic coefficients can also be filled in as the 
product of the single-locus or locus × environment (G × E) coef-
ficients. Using this approach, we can fill in a complete C-matrix 
for any crossing design a user might choose—including all possible 
G × E CGEs.

As an example, we could study plant height with three dif-
ferent levels of watering: 15, 20 and 25 ml regimes. These would 
be rescaled as −1, 0 and 1, respectively, and assigned as coeffi-
cients in our C-matrix. The effect that we estimate for the envi-
ronment with this approach would then be equal to the expected 
increase in plant height resulting from increasing watering by 5 ml. 
Additionally, we could assign interactions, such as an environmen-
tal by additive effect. This interaction term allows us to determine 
the degree to which the environmental variable and a composite 
genetic effect interact to determine the observed phenotype. 
Note that from the standpoint of a gene by environment interac-
tion, we could also treat the sex of an organism identically (i.e. as 

(4)Aa=SP2+DP2−1

(5)Xa=SXP2+DXP2−1

(6)Xa=2DXP2−1

(7)Ad=SP2(1−DP2)+DP2(1−SP2)

(8)Ad=SP2+DP2−2SP2DP2

(9)Xd=SXP2+DXP2−2SXP2DXP2

(10)v�
i
=

2
(

vi−min
(

vi … vn
))

max
(

vi … vn
)

−min
(

vi … vn
) −1
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a binary environmental variable that can interact with the genes in 
any portion of the genome). By applying this approach to sex, we 
can investigate the genetic architecture of sexual dimorphism. If 
we measure a phenotype of interest in males and females of each 
cohort separately and assign a sex column that has negative one 
for one sex and positive one for the other, we can then recover the 
simple effect of sex as well as interactions with traditional genetic 
effects.

2.3 | Data and analysis

2.3.1 | Environmental variation

To evaluate the performance of our approach to incorporating environ-
mental variation and gene by environment interactions, we created a 
variety of simulated data sets. The first simulated data set is generated 
under a model where the phenotype is described by a simple additive 
effect but is impacted by unrecognized environmental variation. To 
simulate data, we first chose the set of crosses that we would evaluate. 
We chose an experimental design with eight cohorts: parental strains 
(P1 and P2), initial crosses (F1 and rF1) and then four backcrosses involv-
ing an F1 or rF1 sire and a parental strain dam. To create the expected 
phenotypes for each of these cohorts, we assigned a midparent mean 
of 2.25 and an additive effect of 0.35. These values allow us to assign 
an expected mean value to any cohort; for instance, the P2 line would 
have a mean phenotype of 2.6, an F1 would have a mean phenotype of 
2.25, and a backcross to the P1 parent would have a mean phenotype 
of 2.075. Next, we sampled 100 individuals from each cohort, drawing 
individual phenotype measures from a normal distribution with a mean 
equal to the expected value for the cohort and a standard deviation 
equal to 0.3. The above values (mean, additive effect and standard de-
viation) were informed by a recent analysis of ovule number in crosses 
between strains of Silene (Delph & Demuth, 2016). To incorporate 
environmental variation, we imagined an unmeasured binary environ-
mental variable that impacted the phenotype of interest. We evaluated 
ten magnitudes of the environmental effect ranging from zero to 0.35 
(the same as the genetic effect). At each of the ten levels, we created 
data sets where a proportion of randomly chosen individuals (regard-
less of cohort membership) experienced the environmental effect (had 
this value added to their sampled phenotype) or where all individuals 
of randomly chosen cohorts experienced the environmental effect (the 
expected value, i.e. mean for the normal distribution was increased by 
this value). Some environmental variables may have effects that vary 
both in magnitude and sign (e.g. some individuals have an increased 
phenotype whereas others have a decreased phenotype). Because 
this type of environmental variation increases cohort variance, it will 
reduce power but should not lead to biases in the inference of trait 
genetic architecture. Therefore, we have instead focused our analysis 
on environmental effects with a consistent directional impact on the 
trait of interest which has the potential to create strong biases in the 
inference of trait genetic architecture.

To explore the role that the frequency of the environmental 
effect has on our analysis, we repeated this process varying the 

proportion of individuals or cohorts that experienced the environ-
mental effect. In the case of individuals experiencing the environ-
mental effect, we created data sets where the environmental effect 
impacted between 0% and 100% of individuals. For the case of co-
horts experiencing the environmental effect, we created data sets 
where the environmental effect impacted zero to eight randomly 
chosen cohorts. The cohort treatment was designed to capture the 
genuine concern that, in some experiments, later generation crosses 
may be temporally separated from early crosses leading to the op-
portunity for whole cohorts to experience an unmeasured environ-
mental change. For each simulation condition, we generated 1000 
data sets yielding a total of 180,000 simulated data sets.

To understand the impact of smaller sample sizes in the pres-
ence of unrecognized environmental variation, we also performed 
a smaller simulation study with cohort sizes of 10, 50 and 100 indi-
viduals. With each sample size, we followed a simulation procedure 
similar to that described above. However, the environmental effect 
was held constant 0.17 (approximately half of the true genetic ef-
fect). This environmental variable was allowed to impact the phe-
notype of three randomly chosen cohorts in each simulation. For 
each of these scenarios, we simulated 100 data sets and performed 
line-cross analysis on each simulated data set.

In some cases, environmental variation is simply unavoidable. To 
demonstrate the strength of our approach to incorporating known 
environmental variation, we re-evaluate classic data sets exploring 
the genetic architecture of fruit weight, number of locules per fruit, 
fruits per centimetre, plant spread and plant height in crosses be-
tween Johannisfeuer and Danmark tomato strains with each cross 
grown in two successive years (Powers, 1941). Each of these data 
sets is first analysed alone and then combined with the addition of 
only a binary environmental variable representing the year that the 
cohort was grown.

2.3.2 | Adaptive divergence

Next, we simulated data sets to show how our approach can be ap-
plied to understand the genetic architecture of adaptive divergence. 
We created a simulated data set inspired by investigations of local 
adaptation in sticklebacks (Rundle, 2002). Like this original investi-
gation, we pictured a species where each parental strain is adapted 
to its typical environment, and we then measured some correlate of 
fitness (e.g. growth rate) of both strains and crosses between them in 
both environments. For this simulation, we used five cohorts: P1, P2, 
F1, BC1 and BC2. BC1 and BC2 are backcrosses of the F1 to P1 and 
P2, respectively. For each cohort, we generated the expected values 
by assigning a midparent mean of ten and an environment by autoso-
mal additive effect of four. This environment by autosomal additive 
effect represents the case that some genes carried on autosomes 
have alleles with additive effect that benefits the organism but only 
in certain environments. We created our simulated data sets by using 
these expected values as the mean of a normal distribution with a 
standard deviation of six. For each cohort, we sampled 10, 25, 50 or 
100 individuals. We chose these values based on data presented in 
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their Figure 2 (Rundle, 2002). For each sample size, we simulated 100 
replicate data sets for a total of 400 simulated data sets.

2.3.3 | Sexual dimorphism

Finally, to illustrate the use of our approach in understanding the 
genetic architecture of sexual dimorphism, we created simulated 
data sets representing a species where males possess an exagger-
ated trait, but populations differ in the degree of dimorphism. For 
simplicity, we kept the magnitude of the phenotype and the cohorts 
sampled the same as described above for our investigation of un-
recognized environmental variation. However, each cohort was now 
represented by separate measures for males and females. To create 
the expected phenotypes for each of these cohorts, we assigned a 
midparent mean of 2.25, and we also assigned a sex effect of 0.15 so 
that males would have a generally higher phenotype measure than 
comparable females. Next, we explored three ways that a genetic 
difference in the degree of sexual dimorphism might be generated. 
The first genetic architecture had a sex by autosomal additive effect. 
The second genetic architecture had a sex by X additive effect. The 
final genetic architecture was a Y effect which does not require a sex 
interaction since it is already sex-limited. In each of these cases, the 
effect size was set to 0.15. In all cases, individual phenotypes were 
drawn from a normal distribution with a mean equal to the expected 
value and a standard deviation of 0.3. Under this simulation, the dif-
ference in sexual dimorphism (between P1 and P2) is of roughly the 
same magnitude as the minimum difference in the sexes. For each of 
these three genetic architectures, we simulated data sets where 10, 
25, 50 or 100 individuals were sampled in each cohort. For each set 
of simulation conditions, we simulated 100 replicate data sets for a 
total of 12,000 simulated data sets.

In all cases, resulting data sets were analysed with R version 
3.4.4 and the LCA function in the package SAGA version 2.0 
(https://github.com/coleoguy/SAGA2). For the first simulated 
data set, the generating model has just a single effect (autosomal 
additive), and we set the max.pars argument to 4. Briefly, the max.
pars argument limits the number of possible variables included in 
models tested. This is helpful in cases where many cohorts make it 
possible to test many potential CGEs simultaneously leading to a 
model space consisting of hundreds of thousands of possible mod-
els. We tested a small number of data sets with larger max.pars 
arguments and saw no systematic differences in parameter esti-
mates, but by limiting the size of models, we were able to analyse 
the 180,000 data sets in a reasonable time. Because there were 
far fewer data sets to analyse in other simulated and empirical ex-
amples, we did not have to use the max.pars argument in other 
analyses. For both the simulated data set investigating adaptation 
and the empirical datasets, we used the default settings except for 
the env argument that was set to true. For the purpose of calculat-
ing power and false-positive rate, we considered a CGE significant 
if it had a variable importance greater than 0.9 and a parameter 
estimate where the confidence interval excluded zero (Blackmon 
& Demuth, 2016). Scripts used for all simulations and analyses are 

found in the Dryad repository associated with this manuscript 
(https://doi.org/10.5061/dryad.fd0s01b).

3  | RESULTS

Our simulation approach included environmental variation both 
among individuals and among cohorts. Our results suggest that 
variation among cohorts has far greater potential to reduce power 
and create false positives than does environmental variation among 
individuals from all cohorts. For the case where undocumented 
variation that occurs across all individuals regardless of cohort mem-
bership, we find that false-positive rate ranges from 0.018 to 0.032 
(Figure 1a; red lines). Furthermore, we find no consistent differences 
in weak and strong environmental effect when environmental varia-
tion is spread across all cohorts equally. Under this same simulation 
condition, we find that power ranges from 0.78 to 0.83 and again 
we find no consistent difference among simulations with weak or 
strong environmental effect (Figure 1b; red lines). In contrast, an 
undocumented environmental variation that occurs in all individuals 
of some cohorts is more concerning and biologically more relevant 
since many crossing experiments involve individuals reared at differ-
ent times a fact that may lead to unavoidable environmental varia-
tion. The proportion of simulated data sets that result in at least one 
false-positive reaches a high of 0.74 when just a single family is im-
pacted by a strong and undocumented environmental effect (effect 
size = 0.35; Figure 1a; blue). The false-positive rate reduces from 
this high but remains significantly above 5% under all simulations 
that have whole families impacted by undocumented environmental 
variation. As the number of families impacted by undocumented en-
vironmental variation increases, the power reduces down to a low of 
approximately 27% when the environmental effect is strong (0.35) 
and 50% of the families are affected (Figure 1b; blue). We also per-
formed a supplemental analysis to determine the impact of smaller 
sample sizes. As expected power is lowest and false-positive rate 
is highest when sample size is small. With a cohort size of ten, the 
false-positive rate was 21% this reduced to 14% when cohort size 
was 100. In contrast, power was 32% when cohort size was ten but 
reached a high of 42% when cohort size was 100 (Figure S1).

To illustrate the power of incorporating environmental variation, 
we show how even accounting for unmeasured but inevitable envi-
ronmental variation can improve LCA. In this case, we reanalysed 
classic data sets of crosses between Johannisfeuer and Danmark 
tomato strains that were repeated in two separate years (Powers, 
1941). In our reanalysis of this data, we found that fruit weight and 
plant spread both increased in the second year and as expected 
we recover this environmental effect in our analysis (Table S2). 
Additionally, when we combine the separate years of crosses into 
a single analysis with an effect assigned to the year of the cross, we 
are able to increase our certainty in the identification of genetic ef-
fects and, more importantly, in some cases we are able to recover a 
G × E interaction. Specifically, in the cross examining fruit weight, we 
find that there is an autosome additive by environment interaction 

https://github.com/coleoguy/SAGA2
https://doi.org/10.5061/dryad.fd0s01b
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(Figure 2). This suggests that some unmeasured environmental vari-
able in these 2 years caused a greater shift in phenotypes measured 
in one strain than the other. For example, this would be expected if 
one strain had genes on autosomes that acted in an additive fashion 
to increase drought tolerance and one year was significantly drier 
than the other. This type of analysis also reveals phenotypic stabil-
ity. For instance, the number of locules per fruit is different in the 
two strains (Johannisfeuer mean = 9.07 and Danmark mean = 5.83). 
Analysis of each year's data indicated a role for additive effects (1.85 
and 1.43 in respective years) and dominance effects (−1.69 and 
−1.57 in respective years). However, when we combine these years, 
we do not see any sign of an effect of the environment on this trait 
and estimates for additive and dominance effects remain largely un-
changed (1.57 and −1.61).

Including environmental variation can be even more powerful 
when the environment is intentionally manipulated. Using simulated 
data, we found that our LCA approach was able to successfully de-
tect additive by environment interactions 86% of the time at biolog-
ically realistic effect sizes when sample size per cohort was at least 
25 individuals (Figure 3; blue line). When sample size was lower than 
25, we found that both power and false-positive rate suffered. When 
sample size per cohort was ten, 12% of simulated data sets resulted 
in false positives. At higher sample sizes, false-positive rates reduced 
to more acceptable levels. Despite relatively low power with small 
sample size, we found that our LCA approach was still effective at 
estimating the generating CGE effect. Specifically, when sample size 
per cohort was ten in those simulations where SAGA failed to find the 
generating CGE as significant, the mean parameter estimate was still 
2.22 (standard deviation of 1.1), just slightly below the true value 3.0.

Our application of LCA to the analysis of sexual dimorphism il-
lustrates the potential for LCA to uncover the genetic architecture 
of complex phenotypes that have traditionally been analysed in 
isolation. Our results indicate that in systems where sample size is 

sufficient (greater than ten per sex and cohort), we are able to reliably 
recover CGEs that describe the interaction between autosomal or sex 
chromosome loci with additive action and the sex they are carried in 
(Figure 4). When sample size per cohort is ten, we found that power 
to detect the genetic architectures was less than 50% (Autosome by 
sex = 34%, X chromosome by sex = 37%, Y chromosome = 48%). This 
quickly improved with increased sample size, with power in excess 
of 77% for all architectures when sample size per a cohort was 25 
individuals. When sample size reached 50 individuals per cohort, all 
architectures were successfully identified in greater than 87% data 
sets. Although all three tested CGEs were largely similar, we found 
slightly higher power to detect sexual dimorphism that is due to genes 
that act in an additive fashion and occur on the Y chromosome in com-
parison with additive loci on autosomes or X chromosomes.

4  | DISCUSSION

Despite the early recognition that the mathematical framework 
of LCA could be extended to incorporate environmental effects 
(Bulmer, 1980), until now there has been no easy method for re-
searchers to do so. In the new version of our software, we provide 
this extension and remove other barriers to LCA associated with 
construction of a matrix of genetic effects.

Our results illustrate that researchers must be cognizant of the 
potential for unrecognized environmental variation that impacts the 
trait of interest to influence the results of LCA. However, our results 
also show that if experiments are carefully designed to ensure that 
all cohorts are exposed to the same environmental variation, this is 
a danger that can largely be mitigated. In our simulation study, when 
environment was distributed randomly across individuals without 
respect to their cohort membership, we found no impact on esti-
mates of CGEs. Although this is promising, it may be in part due to 

F IGURE  1  Impact of unrecognized 
environmental variation on LCA analyses 
as a function of the frequency and 
strength of environmental effects. Blue 
lines illustrate the result of whole cohorts 
experiencing an environmental effect. 
Red lines indicate the result of random 
individuals from all cohorts experiencing 
an environmental effect. The darkness 
of the red and blue lines indicates the 
strength of the environmental effect 
ranging from 0.0 to 0.35 (the same 
magnitude as the true genetic effect). (a) 
Proportion of simulated data sets that 
result in at least one false positive. (b) 
Proportion of simulated data sets where 
the true generating effect (additive 
autosomal) was inferred as important
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our sample size. We chose to simulate 100 individuals from each co-
hort in our primary analysis. Whereas this value is realistic for many 
study systems, lower sample sizes may be typical in some study sys-
tems. When cohort sample size is reduced from 100 to 10, we found 
that power fell by 10% and that the false-positive rate increased by 
7%. These results underscore the importance of sufficient sample 

size and controlling environmental variables that may impact the 
trait being studied when sample sizes are small.

Perhaps the most promising result of our investigation of unrec-
ognized environmental variation comes from our reanalysis of empir-
ical data sets. Here, we combined data from multiple years of crops 
grown outdoors—inevitably experiencing many differences in the en-
vironment. We found that by simply allowing year to be a variable in 
the analysis, we could infer the impact of changes in the environment 
across years, and in the case of fruit weight, we were even able to 
infer that there was an interaction between the genes of one line and 
the changes in the environment (Figure 2). We believe that this type 
of analysis where time is the environmental variable may be particu-
larly helpful when conducting experiments where cohorts cannot be 
generated simultaneously and instead an experiment is spread across 
a number of months. In these cases, the date associated with each co-
hort can be used allowing an experimenter to control for unintended 
or unrecognized changes in the environment. However, the model as 
designed assumes a linear relationship between the environmental 
variable (e.g. date) and the phenotype being studied. In cases where 
this is unlikely to be true, it should not be applied or date could be 
transformed to a new scale where its impact on the phenotype would 
be expected to be linear. Furthermore, in the case where a researcher 
measures a possible confounding variable, this framework provides 
a simple and straightforward approach to test whether the possible 
confounding variable impacted the observed phenotypes of their co-
horts. It should be noted that this approach to incorporating an envi-
ronmental variable is suited to either a binary environmental variable 
allowing two levels of effect in the model or as a continuous variable 
that has a linear effect on the phenotype of interest.

F IGURE  3  Inference of gene by environment interaction. The 
blue line illustrates the proportion of simulated datasets where an 
autosomal additive by environment interaction was detected as 
a function of the number of individuals measured in each cohort. 
The red line indicates the proportion of simulated data sets where 
any other composite genetic effect not included in the generating 
model was inferred to be important. The dashed black line indicates 
a value of 0.05
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One concern in the long running debate over the importance of 
epistasis has been the idea that some methods of studying genetic 
architecture might be biased towards or against the inference of 
complex epistatic architectures. With regard to LCA, there has been 
concern that noise in the form of unintended or unmeasured envi-
ronmental variation could make the inference of epistatic genetic 
architectures more likely. To investigate this, we re-evaluated all of 
our simulation results of undocumented environmental variation 
to determine whether there was clear pattern in the types of ge-
netic architectures that were inferred to be important despite their 
absence from the generating model. In the crossing design that we 
simulated, five nonepistatic and eleven epistatic CGEs can be dis-
tinguished. To describe these, we use a capital letter to indicate the 
portion of the genome and a subscript to indicate the mode of gene 
action. Epistatic interactions are denoted by combining two nonepi-
static effects. These nonepistatic effects are autosomal additive (Aa) 
and dominance (Ad), X chromosome additive (Xa) and dominance (Xd), 
and cytotype additive (Ca); the 11 epistatic CGEs that can be distin-
guished are AaAa, AaAd, AaXa, AaXd, AaCa, AdAd, AdXa, AdXd and AdCa. 
Of these CGEs, only Aa was included in the generating model. Thus, 
there are four nonepistatic and eleven epistatic potential false pos-
itives (73.3% of possible false positives are epistatic). If we examine 
the case of strong environmental effect (described in detail above) 
and look across all levels of undocumented cohort level variation 
(Figure 1a; dark blue lines), we find that similar to their proportion 
in the overall set, 74% of false positives are for epistatic CGEs. This 
simple measure suggests that perhaps LCA is not biased towards in-
ference of epistatic interactions. However, if we restrict our analysis 
to simulations where only one cohort is impacted by environmen-
tal variation, we find that the proportion of false positives that are 
epistatic rises to 89%. In contrast, when two cohorts are affected 
by environmental variation the proportion of false positive that are 
epistatic falls to 51%. Although we cannot completely explain this 
phenomenon, it seems to result from the fact that certain epistatic 
CGEs are strongly differentiated by just one or a handful of cohorts 
and if one of these cohorts is impacted by environmental variation it 
can drive a significant result. The specific CGEs and cohorts involved 
will change depending on the experimental design, but the potential 
severity of this problem should be lessened by larger experiments 
that have more cohorts differing in the contribution of each CGE.

Despite sharing the majority of the genome, sexual dimorphism 
is common in almost all clades with separate sexes (Barrett & Hough, 
2012; Darwin, 1871). Theoretical predictions suggest the loci un-
derlying sexually dimorphic traits might be concentrated on the 
sex chromosomes, since this can reduce negative intersexual cor-
relations in fitness (Blackmon & Brandvain, 2017; Charlesworth & 
Charlesworth, 1980; Fisher, 1958; Rice, 1984; Rice & Chippindale, 
2001). Unfortunately, most theoretical work has focused on the 
evolutionary dynamics of single loci, and it remains unclear how 
the polygenic nature of most traits might change these predictions. 
Furthermore, empirical evidence has shown that autosomes are 
often important contributors to sexual dimorphic traits, and even 
species without sex chromosomes exhibit sexual dimorphism (Mank, 

2008). The extension we have developed for LCA allows a novel ap-
proach to investigate the genetic architecture of sexual dimorphism 
that should shed light on the relative contribution of autosomes and 
sex chromosomes even in the case of highly polygenic traits. In tra-
ditional LCA analyses, it has been necessary to either analyse only 
females, only males, or cohorts made up of an equal number of males 
and females. Whereas these approaches are all still possible under 
our implementation, the ability to combine analysis of separate male 
and female means for each cohort in a single analysis should be the 
preferred approach used moving forward. This method will allow for 
a better understanding of the interactions between sex and genetic 
architecture and a more accurate estimation of many genetic effects.

Understanding interactions between genomes and the environ-
ment that produce the selective forces that act on them are central 
to evolutionary biology. We have illustrated that with LCA, we can 
successfully recover the signal of this relationship with biologically 
realistic effect sizes. This is particularly important since it offers an 
opportunity to explore intrinsic versus extrinsic reproductive isola-
tion and the process of adaptive speciation. Furthermore, because 
the LCA approach looks at the average effects across all loci, it is 
not limited to finding loci of large effect; instead, we can see the 
contribution of all loci across the genome simultaneously. This offers 
a robust approach to detecting complex interactions that might be 
missed with methods that search for QTLs or QTNs. Furthermore, it 
is a method available to any researcher without the necessity of se-
quencing many individuals, an important consideration despite the 
falling prices of sequencing. In sum, environmental variation does 
introduce some peril to an LCA study, but if handled properly the 
incorporation of environmental data can be dealt with and can even 
increase the inferential power of a study. Furthermore, the same 
mathematics that allows us to deal with environmental variation also 
allows us to leverage LCA to characterize the genetic architecture 
of sexual dimorphism and adaptive divergence in any study system 
where controlled crosses can be produced and phenotyped.
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