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ABSTRACT 

How common is balancing selection, and what fraction of phenotypic variance is attributable to 

balanced polymorphisms? Despite decades of research, answers to these questions remain 

elusive. Moreover, there is no clear theoretical prediction about the frequency with which 

balancing selection is expected to arise within a population. Here, we use an extension of 

Fisher’s geometric model of adaptation to predict the probability of balancing selection in a 

population with separate sexes, wherein polymorphism is potentially maintained by two forms of 

balancing selection: (1) heterozygote advantage, where heterozygous individuals at a locus have 

higher fitness than homozygous individuals; and (2) sexually antagonistic selection (aka 

intralocus sexual conflict), where the fitness of each sex is maximized by different genotypes at a 

locus. We show that balancing selection is common under biologically plausible conditions, and 

that sex differences in selection or sex-by-genotype effects of mutations can each increase 

opportunities for balancing selection. Although heterozygote advantage and sexual antagonism 

represent alternative mechanisms for maintaining polymorphism, they mutually exist along a 

balancing selection continuum that depends on population and sex-specific parameters of 

selection and mutation. Sexual antagonism is the dominant mode of balancing selection across 

most of this continuum. 

 

 



	  

INTRODUCTION 

One of the primary goals of population genetics is to evaluate how processes of mutation, 

selection, migration, recombination, and genetic drift account for the maintenance of genetic 

variation in natural populations. This “Great Obsession” with genetic variation (Gillespie 2004, 

p. 154) is reflected by a massive body of theoretical and empirical research that seeks to connect 

empirical patterns of population and quantitative genetic variability with the specific 

evolutionary processes that might account for them.  

Balancing selection – selection that maintains genetic variation at a locus – could potentially 

account for an important fraction of observed quantitative genetic variability (Dobzhansky 1955; 

Lewontin 1974; Charlesworth and Hughes 1999). Although relatively few unambiguous cases of 

balancing selection have been documented to date (see Charlesworth 2006; Hedrick 2012; 

Leffler et al. 2013; Johnston et al. 2013), empirical methods for detecting their population 

genetic signatures are highly conservative and may fail to identify many (or most) instances of 

balancing selection within a genome (Charlesworth 2006; Charlesworth and Charlesworth 2010). 

Furthermore, balanced polymorphisms may plausibly account for several empirical observations 

that are not easily explained by alternative models of variation maintained by recurrent mutation. 

For example, the high genetic variance in life history and reproductive traits (Houle 1992; 

Pomiankowski and Moller 1995), and the presence of intermediate frequency alleles with large 

phenotypic effects (Long et al. 2000), are each potentially attributable to a subset of loci that 

segregate for balanced alleles (Charlesworth and Hughes 1999; Turelli and Barton 2004).  

Population genetic theory provides a complementary approach for assessing the plausibility 

of different scenarios of balancing selection, and indeed, there are many formal models that 

delineate the parameter conditions required for balancing selection to operate (e.g., Wright 1969; 



	  

Crow and Kimura 1970; Prout 2000). However, most theory cannot predict the probability of 

balancing selection because it does not incorporate details of the fitness effect distribution among 

random alleles and genotypes in a population. Such details ultimately determine the relative 

likelihood of different forms of selection at individual loci.  

A recent study by Sellis et al. (2011) provides new insight into the probability of balancing 

selection by modeling the frequency of heterozygote advantage in Fisher’s geometric model 

(FGM; Fisher 1930; Orr 2005a, b) – an influential theoretical framework for the fitness effect 

distribution of random mutations. Sellis et al. (2011) showed that, among loci contributing to 

adaptive evolutionary change, the probability of heterozygote advantage tends to increase with 

the “standardized size” (Orr 1998) of adaptive mutations. Under Fisher’s original scaling, 

mutation size is given by , where r is the absolute phenotypic effect size of the 

mutation, n is the number of traits, and z represents the displacement of the population from a 

fitness optimum within phenotypic space (see Fisher 1930, pp. 38-41; Orr 1998). A mutation of 

size r is effectively small when the distance to the optimum is large (e.g. in the limit r/z ! 0), 

and effectively large when the distance to the optimum is small (e.g. r ! z; for a clear discussion 

of x and its biological meaning, see Orr 1998, pp. 937-938). Adaptation – the evolutionary 

movement of a population toward its optimum – causes the distance to the optimum to shrink 

(Orr 1998), and thereby increases the scaled sizes of random mutations. Poorly adapted 

populations that are far from an optimum may initially experience little opportunity for 

heterozygote advantage, yet adaptive evolution will ultimately overturn such initially 

unfavorable conditions. During the course of an adaptive walk within phenotypic space, 

mutations eventually become sufficiently “large” for heterozygote advantage to be likely (Sellis 

et al. 2011; for related results, see Manna, Martin, Lenormand 2011).  
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In species with separate sexes, balancing selection can potentially arise by way of 

heterozygote advantage, or by sexual antagonism (aka “intralocus sexual conflict”), in which the 

best genotype for females differs from the best genotype for males (Rice 1992; Chippindale et al. 

2001). Whether balanced, sexual antagonistic alleles are common within populations has 

important and wide-ranging biological implications for the genetic basis of quantitative traits 

(Rice 1984; Turelli and Barton 2004; Bonduriansky and Chenoweth 2009), genetic loads and 

extinction risk (Kokko and Brooks 2003; Whitlock and Agrawal 2009; Connallon et al. 2010; 

Holman and Kokko 2013), mating system evolution (Seger and Trivers 1986; Albert and Otto 

2005; Blackburn et al. 2010; Roze and Otto 2012), and the evolution of genomes and genetic 

systems (Charlesworth and Charlesworth 1980; Day and Bonduriansky 2004; Ellegren and 

Parsch 2007, 2013; Mank 2009; Connallon and Clark 2010, 2011, 2013; van Doorn and 

Kirkpatrick 2007; 2010; Wright and Mank 2013; Kirkpatrick and Guerrero 2014; Charlesworth 

et al. 2014). Although prior theory clearly defines the parameter criteria for balancing selection 

by sexual antagonism (e.g., Kidwell et al. 1977; Pamilo 1979; Patten and Haig 2009; Unckless 

and Herren 2009; Fry 2010; Patten et al. 2010; Arnqvist 2011; Connallon and Clark 2012; 

Mullon et al. 2012; Jordan and Charlesworth 2012; Patten et al. 2013), it remains unclear how 

often such conditions might be expected to arise in dioecious populations. A recent extension of 

Fisher’s geometric model provides a theoretical framework for predicting the sex-specific 

distribution of mutant fitness effects (Connallon and Clark 2014), yet this theory has not 

addressed opportunities for balancing selection. 

Here, we present new theoretical predictions for the probability of balancing selection in a 

species with distinct sexes. Our models build upon a recent extension of Fisher’s geometric 

model (Connallon and Clark 2014) that incorporates two evolutionarily important features of 



	  

dioecious species: (1) sexually dimorphic fitness landscapes, which generate sex-specific 

patterns of selection on phenotypes expressed by each sex; and (2) sex-by-genotype interactions 

(a form of gene-by-environment interaction during development), in which mutations have 

sexually dimorphic effects on female and male phenotypes. We first extend Fisher’s original 

scaling function by developing a mathematical expression for the standardized mutation size in a 

dioecious population. We show that this new scaling function can be used to calculate several 

interesting metrics in FGM, including: (1) the probability that random mutations experience 

positive, purifying, or balancing selection; and (2) the critical mutation size that maximizes the 

probability of balancing selection. We show that sex differences in selection on phenotypes and 

genotype-by-sex interactions each tend to inflate the standardized mutation size, and that these 

effects increase opportunities for balancing selection in the FGM framework. Finally, we 

demonstrate that, for most of the parameter space of sex-specific selection and gene-by-sex 

interactions, sexual antagonism is a pervasive feature of balancing selection.  

 

MODEL 

Fisher’s geometric model (FGM) with two sexes 

The basic model analyzed here is a diploid extension of the haploid, two-sex FGM model 

that was recently developed by Connallon and Clark (2014). Male and female phenotypes are 

each characterized by a vector of n trait values, with each vector representing a specific location 

in n-dimensional phenotypic space. For mathematical convenience, and following prior work in 

Fisher’s model (Fisher 1930; Orr 1998; Sellis et al. 2011; Connallon and Clark 2014; see below), 

we assume that: (1) sex-specific fitness is a function of the Euclidean distance to the relevant 

optimum; and (2) each mutation has a random, unbiased orientation within phenotypic space. 



	  

Relaxation of these assumptions – for example, by allowing for elliptical fitness surfaces and/or 

mutational biases – often decreases the “effective” dimensionality in Fisher’s geometric model 

(see Waxman and Welch 2005; Martin and Lenormand 2006; Martin 2014), such that n may be 

interpreted as the effective number (rather than the total number) of independent traits. 

The initial population is assumed to be fixed for a wild type genotype, for which males and 

females express phenotypic values of Am and Af, respectively, where Aj = {x1j, x2j, … xnj} is a 

vector of n trait values for the jth sex; j = {f, m}. Optimal trait combinations for males and 

females are depicted by vectors Om and Of, which describe the locations of sex-specific optima 

for the n traits. The direction of selection acting in the two sexes can be described using a pair of 

vectors (one for each sex) that point from Aj to Oj (Fig. 1). The lengths of the vectors are given 

by zm and zf, and represent the displacement of each sex from its optimum (i.e., the Euclidean 

distance between Aj and Oj). The angle between vectors is θsel, which potentially takes any value 

between zero (where directions of sex-specific selection are the same in males and females) and 

π (where the sexes are selected in opposite directions). The degree of correlation between male 

and female orientations of directional selection is ρsel = cos(θsel) (Rodgers and Nicewander 1988; 

Connallon and Clark 2014). Sex-specific fitness of females and males, respectively, follows a 

Gaussian function: 

wf = exp(– ωfzf
2)           (1a), 

and 

wm = exp(– ωmzm
2)          (1b), 

where ωf and ωm are positive constants that describe the rate of fitness decline away from each 

optimum.  



	  

The phenotypic effects of each mutation can be similarly summarized using sex-specific 

vectors (Fig. 1). Each mutation has a magnitude, with rj representing the phenotypic (i.e., 

Euclidean) distance between Aj and the location of individuals that are homozygous for the 

mutation. The magnitude in a heterozygote is rjh, where h represents the dominance of the 

mutation with respect to the phenotype (i.e., 0 < h < 1, with h = 0, h = ½, and h = 1 

corresponding to recessive, additive or codominant, and dominant effects, respectively). 

Mutational orientations are assumed to be random and unbiased in n-dimensional space. The 

degree of similarity between the sexes, for each mutation’s orientation in phenotypic space, 

depends on the between-sex correlation of phenotypic effects within individual trait axes. For a 

mutation with magnitude rm and rf, ρmut represents both the phenotypic correlation between the 

sexes for each trait, and the mean degree of correlation between mutant vectors (ρmut = 

E[cos(θmut)], where θmut is the angle between the vectors of a mutation, and E[] denotes the 

expectation; see Connallon and Clark 2014). 

Taking both selection and mutation into consideration, we can calculate distances between 

the optimum Oj, and the phenotypic position of individuals that carry zero, one, or two copies of 

a given mutation. Letting Oj' = Oj – Aj = {o1j, o2j, … onj}, the distance to the optimum in 

heterozygous males and females will be: 

   (2a) 

and 

   (2b) 
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(Appendix A), where the values of mi and fi are obtained from n independent draws from a 

bivariate standard normal distribution with cov(mi, fi) = ρmut (Connallon and Clark 2014). These 

relationships naturally emerge from the mutation algorithm described further below (see 

“Simulations” section), with approximations on the right hand side of eqs. (2a) and (2b) accurate 

for values of n = 10 or greater (Welch and Waxman 2003; Connallon and Clark 2014). Distances 

to the optima for homozygous carriers of the mutation, zj(hom), can be obtained by setting h = 1 in 

eq. (2). Heterozygous and homozygous selection coefficients for mutations can be calculated 

directly from eqs. (1-2) (Appendix A), with homozygous selection coefficients defined as sj2 = 

exp[ωj(zj
2 – zj(hom)

2)] – 1, and heterozygous selection coefficients defined as sj1 = exp[ωj(zj
2 – 

zj(het)
2)] – 1. 

 

Criteria for positive selection and balancing selection 

Balancing selection criteria follow the well-established theory of sex-specific selection at a 

diploid locus with two alleles (e.g., Kidwell et al. 1977). Let B1 represent an ancestral allele, and 

B2 the derived allele. The relative fitnesses for the three genotypes are provided in Table 1. We 

assume that generations are discrete, and follow the life cycle: birth, selection prior to mating, 

and random mating among breeding adults. In cases where selection differs between males and 

females, the frequency of alleles inherited from mothers and from fathers will differ. Following 

convention, we define qm and qf as the frequency of B2 alleles among the male and female 

gametes that contribute to a given generation.  

Following standard criteria for determining evolutionary stability (see Otto and Day 2007), a 

new (rare) mutation will experience selection to increase in frequency when the boundary 



	  

equilibrium qm, qf = 0 is unstable. The criterion for selection to favor invasion of a rare mutation 

is: 

0 < sf1 + sm1           (3), 

Mutations that meet this criterion can be further divided into mutually exclusive subsets: (1) 

positively selected mutations that are also favored to fix in the population; and (2) mutations 

under balancing selection, which can invade from low frequency, but are not favored to fix. For 

the latter case, selection favors the maintenance of ancestral (wild-type) and mutant alleles. 

Balancing selection occurs when both boundary equilibria (qm, qf = 0; qm, qf = 1) are unstable, a 

condition often referred to as a “protected polymorphism” (Prout 1968). The condition for 

balancing selection is: 

0 < sf1 + sm1 > sf2(1 + sm2 – sm1) + sm2(1 + sf2 – sf1)      (4). 

We define positive selection when qm, qf = 0 is unstable (B2 invades when rare), and qm	  

qf = 1 is stable (B1 does not invade when rare).	  

 

Simulations 

In our subsequent analytical results, we assume that: (1) mutations have small fitness effects, 

as is generally expected (e.g., Orr 2005a, 2005b, 2006; analytical results are appropriate for 

selection coefficients within the approximate range: sf1, sf2, sm1, sm2 < 0.1); and (2) dimensionality 

is sufficiently high so that the approximations in eq. (2) remain valid (i.e., that n > 10; Welch and 

Waxman 2003; Connallon and Clark 2014). Analytical results were verified using an exact 

simulation approach described in Connallon and Clark (2014), with adjustments for diploid 

inheritance. Without any loss of generality, we define the phenotypic positions of wild-type 

males and females, and their respective optima, so that Af = Am = {0, 0, …, 0}, Of = {zf, 0, …, 0}, 

and Om = {zmcos(θsel), zmsin(θsel), 0, …, 0}. Mutation magnitudes for each sex (rm, rf) were 



	  

generated using a bivariate gamma distribution with equal male and female marginal 

distributions (values of rm and rf were obtained using the “mixture approach” algorithm, 

described in Michael and Schucany 2002). Within the jth sex, the phenotypic location of 

individuals homozygous for a random mutation is described by a vector, yj = {y1j, y2j, … ynj}, 

with the elements of the vector representing a set of phenotypic changes in the n traits. For a 

mutation with magnitude rm in males, yim = rmmi/M, where , and the mi are 

independent draws from a standard normal distribution. This sampling strategy generates 

random, uniformly distributed points on the surface of an n-sphere with radius rm (Muller 1959; 

Marsaglia 1972; Connallon and Clark 2014). For a mutation with magnitude rf in females, yif = 

rffi/F, where , and the fi are independent draws from a standard normal distribution 

with cov(mi, fi) = ρmut. For a mutation with homozygous effect yj = {y1j, y2j, … ynj}, the 

corresponding heterozygous effect is modified by dominance, so that yjh = {y1jh, y2jh, … ynjh} 

(following Sellis et al. 2011). Once the yim and yif are specified for an individual mutation, it is 

straightforward to calculate heterozygous and homozygous selection coefficients for each sex, by 

using eqs. (1-2) (see Appendix A). 

 

RESULTS 

Mutation size and the probability of balancing selection 

The proportion of random mutations that experience positive selection, purifying selection, 

and balancing selection, can be directly calculated using the selection criteria outlined above 

(eqs. 3-4), and the distribution of fitness effects that emerges from the two-sex Fisher’s 

geometric model (eqs. 1-2) (see Appendix B). Following Fisher’s original concept of the 

standardized mutation size (Fisher 1930; Orr 1998), let xA represent an adjusted standardized 
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“size” that accounts for sex differences in directional selection, and sex-by-genotype phenotypic 

effects of mutations. This adjusted mutation size is defined as: 

      (5). 

Mutation size is now a function of sex-specific selection and mutation parameters (ωj, rj, zj), 

dimensionality (n), and the between-sex correlation of fitness effects: ρmf = ρselρmut (see Model 

section, above). Note that, by removing all possible sex differences (letting ρmf = 1, ωm = ωf, r = 

rm = rf, z = zm = zf), eq. (5) collapses to Fisher’s (1930) original expression: x = r√(n)/(2z).  

The individual probabilities of purifying, positive, and balancing selection are simple 

functions of the new mutation size scaling (Appendix B). The probability that selection favors 

invasion of a random mutation with size xA is: 

Pr(sm1 + s f 1 > 0) ≈
1
2π

e
−
t2

2 dt
xAh

∞

∫ =1−Φ xAh[ ]       (6), 

where Φ(hxA) is the cumulative standard normal distribution, and h is the dominance of the 

mutation relative to the wild type allele (0 < h < 1). In the absence of sex differences, where xA = 

r√(n)/(2z), eq. (6) is identical to previous, high-dimension approximations (n > 10) for the 

probability of a beneficial mutation in Fisher’s geometric model (Fisher 1930; Kimura 1983; Orr 

1998; Sellis et al. 2011). 

Alleles selected to invade the population may go to fixation or evolve to an intermediate 

balanced polymorphic state. These outcomes – positive and balancing selection, respectively – 

are subsets of the probability space described by eq. (6), and are mutually exclusive. The 

probability that a random mutation evolves under balancing selection is: 
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Pr(balancing) ≈ 1
2π

e
−
t2

2 dt
xAh

xA
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∫ =Φ xA
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&
'

(

)
*−Φ xAh[ ]      (7), 

where Φ again refers to the cumulative standard normal. The probability of positive selection is 

therefore: Pr(positive) = Pr(sf1 + sm1 > 0) – Pr(balancing) = 1 – Φ[xA(1 – h2)/(1 – h)]. Relative 

probabilities of the three modes of selection – purifying, positive, and balancing – are shown in 

Figure 2A. Positive selection is more common than balancing selection when scaled mutation 

size is small (roughly, xA < ½). For larger values of xA, a majority of adaptive mutations evolve 

under balancing selection, rather than positive selection, with the probability of balancing 

selection ultimately converging, with increasing mutation size, to Pr(balancing) = 1 – Φ(xAh). In 

other words, as mutation size increases, an ever increasing share of adaptive mutations 

(mutations favored to invade when rare) will experience balancing selection. 

As originally noted by Fisher (1930), mutations with small phenotypic effects (xA ! 0) are 

likely to improve fitness, whereas large mutations have small probabilities of doing so. A scaled 

mutation size near zero will therefore maximize the probability of positive selection and 

minimize the probability of purifying selection. In contrast, the probability of balancing selection 

is maximized for mutations of intermediate size. The value of xA that maximizes the probability 

of balancing selection is: 

       (8), 

(Appendix C). In the absence of dominance between mutant and wild-type alleles (h = ½), this 

reduces to , with partial recessivity (h < ½) increasing this critical mutation 

effect size, and partial dominance decreasing it (Fig. 2B; gray dotted line). The maximum 

probability of balancing selection can also be calculated by evaluating eq. (7), using the critical 
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mutation size of eq. (8). When phenotypic effects are codominant (h = ½), a maximum of ~24% 

of mutations experience balancing selection; the probability of balancing selection further 

increases with partial recessivity, and decreases with partial dominance (Fig. 2B). 

 

Mean mutation size in species with separate sexes 

Mutation size (xA) clearly influences the probability that random mutations experience 

purifying, positive, or balancing selection. Small-sized mutations evolve primarily under positive 

or purifying selection (in the limit, xA ! 0, there is a roughly 50% probability of each type of 

selection). For larger xA values, most mutations experience purifying selection, but those that do 

not generally evolve under balancing selection (see above; Fig. 2). How will sex-specific 

selection and sex-by-genotype effects influence the average magnitude of xA? As demonstrated 

below, both factors inflate the scaled mutation size, and should thereby expand opportunities for 

balancing selection relative to positive selection. 

An intuitive way to view the scaled mutation size is by rewriting it as a function of the 

strength of directional selection in each sex. The strength of directional selection in the jth sex 

can be quantified as βj = |dln(wj)/dzj| = 2ωjzj, which is conceptually similar to the selection 

gradient of quantitative genetics (Lande 1980; Falconer and Mackay 1996), and is roughly 

proportional to the expected rate of adaptation in Fisher’s geometric model (Orr 2000; Connallon 

and Clark 2014). Mean mutation size, as a function of the strength and orientation of sex-specific 

selection, is: 

E(xA ) = E
(ωmrm

2 +ω f rf
2 ) n

(βmrm )
2 + (β f rf )

2 + 2βmβ f rmrfρmf )

!

"
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which takes into account the probability density of male and female mutational magnitudes 

among random mutations. To illustrate how sex differences in selection or mutational effects will 

affect E(xA), it is useful to consider two extremes of the possible values of βm relative to βf: (1) 

highly asymmetric directional selection (i.e., βm/βf ! 0, or βm/βf ! ∞), which may be plausible 

immediately after a change in the environment; and (2) equally strong directional selection in 

each sex (βm/βf ! 1), which is the long-run expectation during adaptive evolution (Lande 1980; 

Connallon and Clark 2014).  

When directional selection is highly asymmetric, the scaled mutation size reduces to xA ≈ 

(ωmrm
2 + ωfrf

2)(n)0.5/(βjrj), where j refers to the sex experiencing directional selection (there is no 

directional selection in the other sex if it is at its optimum, which we assume here). We 

arbitrarily present results for the case where males alone experience directional selection (βm/βf 

! ∞; similar results are obtained for the opposite case of βm/βf ! 0). The average scaled size of 

a mutation can be approximated using a Taylor series expansion of xA, to second order with 

respect to the mean mutation size of each sex. We assume that mutation size follows a bivariate 

gamma distribution of mutational magnitudes, with equal male and female marginal distributions 

[E(r) = E(rm) = E(rf); var(r) = var(rm) = var(rf)], and a between sex correlation of mutational 

magnitudes of corr(rm, rf) = cov(rm, rf)/var(r). The mean size of a random mutation is then: 

E(xA ) ≈
E(r)(ωm +ω f ) n
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+
2ω f n
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     (10), 

(Appendix D) where k is the shape parameter of the gamma distribution (k > 0), and 

 is the male-specific scaled mutation size. From eq. (10) we can visualize three 

factors that inflate the mean scaled mutation size. E(xA) increases as the relative strength of 
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stabilizing selection in females increases (ωf/ωm increases), and as the distribution of mutation 

magnitudes becomes increasingly leptokurtic (where k decreases, which skews the distribution 

towards small values), and the correlation between sexes becomes small to negative (corr(rm, rf) 

decreases). The scaled mutation size is always elevated as a consequence of selection in females, 

and the magnitude of this elevation is substantial when the ratio ωf/ωm is moderate to large (e.g., 

for ωf/ωm > ½ and corr(rm, rf) > 0, E(xA) is inflated by at least 50 percent relative to the case of no 

selection in females). 

For the scenario of equally strong directional selection in each sex (β = βm = βf), the average 

scaled mutation size becomes: 

E(xA ) ≈ω
E(r) n

β
2

2(1+ ρmf )
+
[1− corr(rm, rf )](1+3ρmf )
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(Appendix D), where ω = (ωm + ωf)/2. E(xA) now depends on the interaction between three forms 

of correlation between the sexes: (1) the correlation of mutant magnitudes, corr(rm, rf); (2) the 

correlation of male and female selection orientations, cos(θsel); and (3) the mean correlation of 

mutational orientations, E[cos(θmut)] (recall that ρmf = cos(θsel)E[cos(θmut)]). E(xA) in inflated by 

sex differences in selection or mutational effects when the bracketed term in eq. (11) is greater 

than one. When mutant phenotypic effects are strongly correlated between the sexes [corr(rm, rf), 

cos(θmut) ! 1], the bracketed term reduces to 2[2 + 2cos(θsel)]–1/2, which increases as the 

orientations of selection become increasingly divergent between the sexes (θsel > 0). When 

phenotypic correlations between the sexes are weak [corr(rm, rf), cos(θmut) ! 0], E(xA) is elevated 

by a factor of (1 + 4k)/(2k√2), or at least ~1.4-fold. Figure 3 shows the magnitude of increase for 

E(xA), across a range of conditions for sex-specific selection and mutational effects. E(xA) is 

inflated across the entire range of parameter space, and particularly so when the sexes are 



	  

selected in different directions (cos(θsel) << 1) or the phenotypic effects of mutations are strongly 

decoupled between the sexes (0 < ρmut = corr(rm, rf) = E[cos(θmut)] << 1). 

 

Mechanisms of balancing selection 

There are two general mechanisms that may account for individual episodes of balancing 

selection in the two-sex geometric model considered here. Variation may be maintained by 

heterozygote advantage in both sexes (sm2 < sm1 > 0, and sf2 < sf1 > 0), or by sexually antagonistic 

(SA) selection, which in its broadest sense occurs when male and female fitnesses are maximized 

by a different genotype at a locus. Sexual antagonism models can be further divided into two 

subforms: (1) “directional” SA selection, where the fitness of males and females is maximized 

by different homozygous genotypes at the locus, leading to positive selection in one sex and 

purifying selection on the other (sm2 < sm1 < 0 < sf1 < sf2, or sf2 < sf1 < 0 < sm1 < sm2); and (2) 

“mixed” SA selection, where there is positive or purifying selection in one sex, and heterozygote 

advantage in the other (sm2 < sm1 > 0, or sf2 < sf1 > 0). 

To estimate the relative frequency of each balancing selection mechanism, we simulated 

random mutations in Fisher’s geometric model, and classified the proportion of balancing 

selection cases that were attributable to heterozygote advantage, directional SA, or mixed SA. 

We first considered a scenario where females were perfectly adapted, and males were displaced 

from their fitness optimum (zf = 0 and zm > 0; equivalent results apply when zf > 0 and zm = 0). 

Under this strongly asymmetric scenario, all mutations are deleterious to females and 

heterozygote advantage in both sexes is not possible. Directional SA selection becomes the 

dominant mechanism of balancing selection when scaled mutation sizes are small or mutations 

have strongly correlated phenotypic effects between the sexes (e.g., Fig. 4, top left panel). As 



	  

phenotypic correlations decrease and the “size” of mutations increases, the mixed SA selection 

scenario predominates (Figs. 4; Supplementary Material Figs. S1-S3). 

We also considered scenarios where both sexes were under similarly strong directional 

selection (βf = βm). In this case, heterozygote advantage remains rare unless the orientation of 

directional selection and the phenotypic effects of mutations are both strongly correlated between 

the sexes (e.g., ρsel, ρmut ! 1; Figs. 4; Supplementary Material Figs. S1-S3). Under the remaining 

conditions, sexual antagonism is the predominant driver of balancing selection, with the mixed 

SA model representing the most common mechanism across most of the parameter space. 

Directional SA selection dominates when males and females are selected in different directions, 

mutational effects are strongly correlated between the sexes, and the scaled mutation size is 

small (Figs. 4; Supplementary Material Figs. S1-S3).   

 

The efficacy of balancing selection 

The above results (e.g., eq. (7)) describe the probability of balancing selection in Fisher’s 

geometric model, but they do not account for evolutionary dynamics under balancing selection, 

in which genetic drift is expected to play an important role (Robertson 1962; Ewens and 

Thomson 1970; Nei and Roychoudhury 1973). To identify criteria for “effective” balancing 

selection – the degree to which allele frequencies in a finite population converge to the 

deterministic equilibrium,  – we analyzed the stationary distribution for random mutations 

within the FGM framework. For a diploid locus in a Wright-Fisher population of effective size 

Ne, the stationary distribution of a B2 allele is proportional to: 

f (q)∝
exp 4Ne

Δq
q(1− q)

dq∫
%

&
'

(

)
*

q(1− q)
        (12) 

q̂



	  

(Ewens 2004; Rice 2004; Charlesworth and Charlesworth 2010), where q is the population 

frequency of B2, and ∆q is the expected frequency change of B2 over a single generation. 

Assuming selection coefficients are small (|sf1|, |sf2|, |sm1|, |sf2| << 1), the expected frequency 

change is: 

       (13), 

where  represents the polymorphic equilibrium under balancing 

selection (see Appendix E).  

The relative importance of selection versus drift depends on the density of the stationary 

distribution near the equilibrium ( ), relative to the density near q = 0 and q = 1, with effectively 

strong selection leading to a high relative density near  (Ewens 2004; pp. 26-27). The ratio of 

the density near the equilibrium, relative to the density near the boundaries, can be described by 

the ratio: 

R =
f (q)dq

q̂−ε

q̂+ε

∫

f (q)dq
0.001−ε

0.001+ε

∫ + f (q)dq
0.999−ε

0.999+ε

∫
≈

1
103 q̂(1− q̂) exp[−Neαq̂

2 ]+ exp[−Neα(1− q̂)
2 ]( )

+O ε3( )  (14) 

(Appendix F), where α = [2(sm1 + sf1) – (sf2 + sm2)] represents the net strength of selection at the 

locus, and 2ε is an arbitrarily small allele frequency interval. Eq. (14) summarizes how the 

efficacy of balancing selection increases with the net strength of selection (α), as equilibrium 

values become increasingly intermediate (  ! ½), and with increasing Ne. While there is no 

specific cutoff to delineate weak from strong balancing selection, values of R > 10 (assuming a 

sufficiently intermediate equilibrium, i.e.: (1 – ) > 0.001) are generally sufficient for 

Δq ≈
[2(sm1 + s f 1)− (s f 2 + sm2 )]

2
q(1− q)(q̂− q)

q̂ =
s f 1 + sm1

2(sm1 + s f 1)− (s f 2 + sm2 )

q̂

q̂

q̂
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maintaining polymorphism, and we use this cutoff as a guideline for interpreting subsequent 

results. (Note that this guideline shares properties with other diffusion-based metrics, such as 

mean heterozygosity under balancing selection, and allele fixation rates or times at polymorphic 

loci; cf. Robertson 1962; Ewens and Thomson 1970; Hedrick 1974; Nei and Roychoudhury 

1973; Ewens 2004; Connallon and Clark 2012; Mullon et al. 2012).  

To evaluate opportunities for effective balancing selection, and to contrast the efficacy under 

distinct mechanisms of sex-specific selection, we simulated random mutations and characterized 

the distribution of  and α for mutations meeting balancing selection criteria (eq. (4)). We again 

considered cases of symmetric versus asymmetric directional selection (βf/βm = 0 and βf/βm = 1) 

across a broad range of mutation sizes, selection and mutation correlations between the sexes 

(ρsel, ρmut), and dominance (h). Specific values of  and α vary widely among mutations subject 

to balancing selection, with sexually antagonistic mutations consistently more susceptible to drift 

than mutations under heterozygote advantage (Figs. 5, S4). Mutations subject to directional SA 

(positive selection in one sex, in purifying selection in the other) are associated with substantially 

lower values of net selection (α), on average, and are the most likely to evolve primarily by drift 

(Figs. 5, S4; note that the α values are plotted on a logarithmic scale in Figs. 5, S4-S8). 

Mutations causing heterozygote advantage in one sex (mixed SA) or both sexes (het. advantage) 

have similar equilibria and net selection strengths, though mixed SA mutations are somewhat 

more susceptible to drift. Overall, these qualitative differences among balancing selection 

mechanisms are robust to variability in male and female fitness landscapes (zm, zf, ρsel), the 

strength of genetic correlations between the sexes (ρmut), dimensionality (n), and dominance (h) 

(see Supplementary Material Figs. S4-S8).  

 

q̂
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DISCUSSION 

Our analysis yields four theoretical insights. First, there are ample opportunities for balancing 

selection in dioecious populations. Criteria for balancing selection at a locus are easily met for 

mutations of intermediate size (on the relevant scale of Fisher’s geometric model: xA, for a 

dioecious population), with a maximum probability typically on the order of 25 percent 

(conditional on dominance; Fig. 2). For all but small-effect mutations, balancing selection is 

more common than positive selection, and may therefore be an important feature of adaptive 

evolutionary change, as also recently demonstrated for the monoecious case by Sellis et al. 

(2011). Second, mean mutation size, E(xA), is elevated by divergent directional selection on male 

and female phenotypes, and by sexually dimorphic phenotypic effects of random mutations (sex-

by-genotype effects). Consequently, the relative probability of balancing versus positive 

selection should increase in species with separate sexes. Third, under most of the parameter 

space of sex-specific selection and sex-by-genotype effects, balancing selection primarily 

involves sexually antagonistic alleles. Finally, in a finite population, the effective strength of 

sexually antagonistic balancing selection is expected to generally be weaker than that of 

heterozygote advantage, particularly under directional SA selection (the mixed SA model shows 

a smaller departure from the het. advantage model). Therefore, SA alleles under balancing 

selection may often exhibit population frequencies that are far from equilibrium (see Livingstone 

1992; Connallon and Clark 2013), evolutionary dynamic properties that mimic those of neutral 

or weakly deleterious alleles (Connallon and Clark 2012), and relatively weak molecular 

population genetic signatures of partial selective sweeps (Connallon and Clark 2013; see Sellis et 

al. 2011 for an additional discussion of balancing selection signals in FGM). 

 



	  

Fitness tradeoffs and opportunities for balancing selection 

Several studies have reported sexually antagonistic genetic variation for fitness, or fitness 

components, in animal and plant populations (reviewed in Bonduriansky and Chenoweth 2009; 

van Doorn 2009; Kirkpatrick 2009; Pennell and Morrow 2013), yet the genetic basis of this 

quantitative genetic variation is not well known. Much of this phenotypic variation could be 

attributable to many loci that segregate for low-frequency sexually antagonistic alleles that are 

maintained at a balance between recurrent mutation, net purifying selection, and genetic drift. 

Alternatively, the variation could be primarily attributable to a small set of loci that segregate for 

intermediate frequency sexually antagonistic alleles under balancing selection.  

Population genetics models are often used to evaluate the plausibility of sexually antagonism 

as a common mechanism for balancing selection (Kidwell et al. 1977; Pamilo 1979; Curtsinger 

1980; Prout 2000; Patten and Haig 2009; Unckless and Herren 2009; Fry 2010; Patten Úbeda 

and Haig 2011; Arnqvist 2011; Jordan and Charlesworth 2012), and most of this theory has 

focused on “SA directional” selection models (but see Kidwell 1977; Gavrilets and Rice 2006; 

Mokkonen et al. 2011), where only a small fraction of the conceivable parameter space for sex-

specific fitness and dominance will generate balancing selection at a diploid locus (Prout 2000; 

Patten and Haig 2009). A broader class of fitness tradeoff scenarios for balancing selection – 

e.g., between environments that vary over time or space (Levene 1953; Haldane and Jayakar 

1963), and antagonistic pleiotropy between traits (Rose 1982; Curtsinger et al. 1994) – suffer 

from similarly severe parameter restrictions (Prout 2000). On the other hand, fitness landscape 

topography biases the range of fitness effect values that beneficial alleles are likely to take (Orr 

2005a, b, 2010; Sellis et al. 2011; Manna et al. 2011), with mutations that are subject to fitness 

tradeoffs (including sexually antagonistic alleles) preferentially occupying portions of the 



	  

conceivable parameter space that are the most amenable to balancing selection (Gillespie 1978; 

Fry 2010).  

Our analysis of the dioecious Fisher’s geometric model, coupled with the recent monoecious 

analysis by Sellis et al. (2011), suggests that balancing selection may arise naturally by way of 

the structure of multidimensional fitness landscapes. Because high-dimensional systems like 

FGM ensure that improvements along some trait axes are coupled with maladaptation along 

others (Orr 1998), adaptive mutations and alleles subject to balancing selection are nearly always 

subject to fitness tradeoffs. Sex differences in selection (ρsel < 1), and sex-by-genotype effects on 

trait variation (ρmut < 1), increase the effective dimensionality of Fisher’s geometric model, and 

thereby expand opportunities for fitness tradeoffs between individuals of a population. In models 

that ignore the effects of sex, balancing selection by heterozygote advantage requires that the 

population be relatively close to a local optimum in the fitness landscape (Sellis et al. 2011). 

Such restrictions are alleviated in the two-sex FGM, whose net effect is to elevate the 

standardized mutation size, and consequently, the importance of balancing relative to positive 

selection during the process of adaptation. 

Whereas fitness tradeoffs are expected to manifest across the full parameter space for 

balancing selection in Fisher’s geometric model, the nature of the underlying tradeoffs varies as 

a function of specific properties of mutation and the phenotypic orientation of sex-specific 

selection. The classical heterozygote balance model (Fisher 1922) dominates when mutant 

phenotypic effects are strongly correlated between the sexes and directional selection is similar 

in strength and orientation between males and females (i.e., ρmut, ρsel >> 0). Sexual antagonism, 

in the absence of heterozygote advantage in either sex (SA directional), dominates as patterns of 

directional selection diverge between the sexes (ρsel decreases), but mutational effects remain 



	  

tightly coupled (ρmut >> 0). A mixed scenario of sexual antagonism – with heterozygote 

advantage in one sex and positive/purifying selection in the other (SA mixed) – represents the 

primary mechanism for maintaining balanced polymorphisms when mutant phenotypic effects 

are poorly correlated between the sexes.  

We can tentatively gauge opportunities for each mode of balancing selection by considering 

relevant empirical estimates of selection and mutational effects on phenotypes expressed by both 

sexes. Current estimates of sex-specific selection reveal widespread asymmetries in the strength 

or direction of selection on individual phenotypic traits (Cox and Calsbeek 2009; Stulp et al. 

2012), and recent estimates of multivariate selection from humans and two insect species provide 

concrete examples of sex differential selection within multivariate trait space (ρsel ≈ – 0.61 for 

three traits of the Indian meal moth: Lewis et al. 2011; ρsel ≈ – 0.73 for seven traits in Drosophila 

serrata: Gosden et al. 2012; ρsel ≈ 0.22 for seven traits in a human population: Stearns et al. 

2012). Although this set of studies is small, selection patterns are consistently divergent between 

the sexes, which implies that mutations with sexually antagonistic fitness effects should be 

common (Connallon and Clark 2014), and that sexual antagonism should play an important role 

in generating balancing selection (i.e., SA directional or SA mixed mechanisms, as shown here). 

Estimates of quantitative genetic variability among male and female traits mostly show strong 

and positive phenotypic correlations between the sexes (e.g., detectable, but modest gene-by-sex 

effects; Houle and Fierst 2012; Poissant et al. 2010; Griffin et al. 2013), which tentatively 

suggests an important potential role for SA directional balancing selection. There is, however, a 

great need for studies that measure the joint effects of random mutations on male and female 

traits (Houle and Fierst 2012). These should prove valuable for further evaluating predictions of 



	  

balancing selection that emerge from Fisher’s geometric model, as well as the severity of genetic 

constraints to sex-specific adaptation and the evolution of sexual dimorphism. 

 

Conclusions 

Balancing selection may be common within diploids (Sellis et al. 2011), and typically 

involve alleles with sexually antagonistic fitness effects. The genetic architecture of sex-specific 

fitness is likely to be complex, with processes of recurrent mutation, balancing selection, and 

genetic drift each potentially contributing to the maintenance of fitness variation (Bonduriansky 

and Chenoweth 2009; Connallon and Clark 2012). Our results show that the parameter criteria 

for sexually antagonistic balancing selection are not difficult to meet, and consequently, 

intermediate frequency sexually antagonistic alleles may contribute substantially to the high 

levels of quantitative genetic variance that are commonly observed in life-history traits and 

fitness components (Houle 1992; Charlesworth and Hughes 1999; Charlesworth and 

Charlesworth 1999). However, the common assumption that balanced polymorphisms are 

maintained at or near equilibrium may be unrealistic, particularly with regard to sexually 

antagonistic alleles, which are particularly susceptible to genetic drift (see Hesketh et al. 2013).  

Finally, both theory and data suggest that the severity of sexual antagonism should generally 

increase during the course of adaptation, with sexually antagonistic mutations being rare in 

poorly adapted populations, and common in well adapted ones (e.g., Long et al. 2012; Connallon 

and Clark 2014; Berger et al. 2014; but this is not always so: see Delcourt et al. 2009; Punzalan 

et al. 2014). The relative probability of balancing versus positive selection similarly increases 

during the course of adaptation in Fisher’s geometric model (e.g., because the average mutation 

“size” increases as the distance to the optimum shrinks; Sellis et al. 2011; see above). Taken 



	  

together, we expect that both sexual antagonism and balancing selection will be most rare 

following an abrupt change in the environment, in which both sexes are displaced from their 

fitness optima. As the population adapts, sexual antagonism and balancing selection should 

become increasingly important in shaping patterns of population genetic variation, leading to a 

reconfiguration of the sex-specific distribution of fitness effects among random mutations 

(Connallon and Clark 2014), and the genetic basis of phenotypic (including fitness) variance, 

between poorly and well-adapted populations. 

 

ACKNOWLEDGEMENTS 

We thank two anonymous reviewers for valuable comments and suggestions on an earlier 

version of the manuscript, and members of the Clark Lab for discussion. This work was funded 

by NIH grant GM64590 to A. G. Clark and A. B. Carvalho. 

 

LITERATURE CITED 

Albert AYK, Otto SP. 2005. Sexual selection can resolve sex-linked sexual antagonism. Science 

310:119-121. 

Allison AC. 1956. The sickle-cell and haemoglobin C genes in some African populations. Annals 

of Human Genetics 21:67-89. 

Arnqvist G. 2011. Assortative mating by fitness and sexually antagonistic genetic variation. 

Evolution 65:2111-2116. 

Barrett RDH, M'Gonigle LK, Otto SP. 2006. The distribution of beneficial mutant effects under 

strong selection. Genetics 174:2071-2079. 

Berger D, Grieshop K, Lind MI, Goenaga J, Maklakov AA, Arnqvist G. 2014. Intralocus sexual 



	  

conflict and environmental stress. Evolution doi:10.1111/evo.12439. 

Blackburn GS, Albert AYK, Otto SP. 2010. The evolution of sex ratio adjustment in the 

presence of sexually antagonistic selection. Am. Nat. 176:264-275. 

Bonduriansky R, Chenoweth SF. 2009. Intralocus sexual conflict. Trends Ecol. Evol. 24:280-

288. 

Charlesworth B, Charlesworth D. 1999. The genetic basis of inbreeding depression. Genetical 

Research 74:329-340. 

Charlesworth B, Charlesworth D. 2010. Elements of Evolutionary Genetics. Roberts & Company 

Publishers. 

Charlesworth B, Hughes KA. 1999. The quantitative genetics of life history traits, pp. 369–392 

in Evolutionary Genetics From Molecules to Morphology, edited by RS Singh and CB 

Krimbas. Cambridge University Press, Cambridge, UK. 

Charlesworth B, Jordan CY, Charlesworth D. 2014. The evolutionary dynamics of sexually 

antagonistic mutations in pseudoautosomal regions of sex chromosomes. Evolution, in press. 

Charlesworth D. 2006. Balancing selection and its effects on sequences in nearby genome 

regions. PloS Genetics 2:e64. 

Charlesworth D, Charlesworth B. 1980. Sex differences in fitness and selection for centric 

fusions between sex-chromosomes and autosomes. Genet Res Camb. 35:205-214. 

Chippindale AK, Gibson JR, Rice WR. 2001. Negative genetic correlation for adult fitness 

between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl. Acad. Sci. USA 

98:1671-1675. 

Connallon T, Cox RM, Calsbeek R. 2010. Fitness consequences of sex-specific selection. 

Evolution 64:1671-1682. 



	  

Connallon T, Clark AG. 2010. Sex linkage, sex-specific selection, and the role of recombination 

in the evolution of sexually dimorphic gene expression. Evolution 64:3417-3442. 

Connallon T, Clark AG. 2011. The resolution of sexual antagonism by gene duplication. 

Genetics 187:919-937. 

Connallon T, Clark AG. 2012. A general population genetic framework for antagonistic selection 

that accounts for demography and recurrent mutation. Genetics 190:1477-1489. 

Connallon T, Clark AG. 2013. Sex-differential selection and the evolution of X inactivation 

strategies. PloS Genetics 9:e1003440. 

Connallon T, Clark AG. 2014. The evolutionary inevitability of sexual antagonism. Proc. Roy. 

Soc. B, doi:10.1098/rspb.2013.2123. 

Cox RM, Calsbeek R. 2009. Sexually antagonistic selection, sexual dimorphism, and the 

resolution of intralocus sexual conflict. Am. Nat. 173:176-187. 

Crow JF, Kimura M. 1970. An Introduction to Population Genetics Theory. Burgess Publishing 

Co. 

Curtsinger JW. 1980. On the opportunity for polymorphism with sex-linkage or haplodiploidy. 

Genetics 96:995-1006. 

Curtsinger JW, Service PM, Prout T. 1994. Antagonistic pleiotropy, reversal of dominance, and 

genetic polymorphism. Am Nat. 144:210-228. 

Day T, Bonduriansky R. 2004. Intralocus sexual conflict can drive the evolution of genomic 

imprinting. Genetics 167:1537-1546. 

Delcourt M, Blows MW, Rundle HD. 2009. Sexually antagonistic genetic variance for fitness in 

an ancestral and novel environment. Proc R Soc B 276:2009-2014. 

Dobzhansky, T. (1955) A review of some fundamental concepts and problems of population 



	  

genetics. Cold Spring Harb. Symp. Quant. Biol. 20:1–15. 

Ellegren H, Parsch J. 2007. The evolution of sex-biased genes and sex-biased gene expression. 

Nat. Rev. Genet. 8:689-698. 

Ewens WJ. 2004. Mathematical population genetics. I. Theoretical introduction. 2nd Ed. 

Springer, New York. 

Ewens WJ, Thomson G. 1970. Heterozygote selective advantage. Annals of Human Genetics 

33:365-376. 

Falconer DS, Mackay TFC. 1996. Introduction to Quantitative Genetics, 4th Ed.. Longmans 

Green, Harlow, Essex, UK.  

Fisher RA. 1922. On the dominance ratio. Proc. Roy. Soc. Edinburgh 42:321-341. 

Fisher RA. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford. 

Fry JD. 2010. The genomic location of sexually antagonistic genetic variation: some cautionary 

comments. Evolution 64:1510-1516. 

Gavrilets S, Rice WR. 2006. Genetic models of homosexuality: generating testable predictions. 

Proc Biol Sci. 273:3031-3038. 

Gillespie JH. 1978. A general model to account for enzyme variation in natural populations. V. 

The SAS-CFF model. Theor Pop Biol. 14:1-45. 

Gillespie JH. 2004. Population Genetics: a Concise Guide. John Hopkins University Press. 

Gosden TP, Shastri KL, Innocenti P, Chenoweth SF. 2012. The B-matrix harbours significant 

and sex-specific constraints on the evolution of multicharacter sexual dimorphism. Evolution 

66:2106-2116. 

Griffin RM, Dean R, Grace JL, Ryden P, Friberg U. 2013. The shared genome is a pervasive 

constriant on the evolution of sex-biased gene expression. Mol. Biol. Evol. 30:2168-2176. 



	  

Haldane JBS, Jayakar SD. 1963. Polymorphism due to selection of varying direction. J Genetics 

48:237-242. 

Hedrick PW. 1974. Genetic variation in a heterogeneous environment. I. Temporal heterogeneity 

and the absolute dominance model. Genetics 78:757-770. 

Hedrick PW. 1999. Antagonistic pleiotropy and genetic polymorphism: a perspective. Heredity 

82:126-133. 

Hedrick PW. 2012. What is the evidence for heterozygote advantage selection? Trends Ecol. 

Evol. 27:698-704 

Hesketh J, Fowler K, Reuter M. 2013. Genetic drift in antagonistic genes leads to divergence in 

sex-specific fitness between experimental populations of Drosophila melanogaster. Evolution 

67:1503-1510. 

Holman L, Kokko H. 2013. The consequences of polyandry for population viability, extinction 

risk and conservation. Phil. Trans. Roy. Soc. Lond. B 368:20120053 

Houle D. 1992. Comparing evolvability and variability of quantitative traits. Genetics 130:195-

204. 

Houle D, Fierst J. 2012. Properties of spontaneous mutational variance and covariance for wing 

size and shape in Drosophila melanogaster. Evolution 67:1116-1130. 

Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, Slate J. 

2013. Life history trade-offs at a single locus maintain sexually selected genetic variation. 

Nature 502:93-95. 

Jordan CY, Charlesworth D. 2012. The potential for sexually antagonistic polymorphism in 

different genomic regions. Evolution 66:505-516. 

Kidwell JF, Clegg MT, Stewart FM, Prout T. 1977. Regions of stable equilibria for models of 



	  

differential selection in the two sexes. Genetics 85:171-183.  

Kimura M. 1983. The neutral theory of molecular evolution. Cambridge University Press, 

Cambridge, UK. 

Kirkpatrick M. 2009. Patterns of quantitative genetic variation in multiple dimensions. Genetica 

136:271-284. 

Kirkpatrick M, Guerrero RF. 2014. Signatures of sex-antagonistic selection on recombining sex 

chromosomes. Genetics, in press. 

Kokko H, Brooks R. 2003. Sexy to die for? Sexual selection and the risk of extinction. Annales 

Zoologici Fennici 40:207-219 

Lande R. 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. 

Evolution 34:292-305. 

Lewontin RC. 1974. The Genetic Basis of Evolutionary Change. Columbia University Press. 

Leffler EM, Gao Z, Pfeifer S, Segurel L, Auton A, Venn O, Bowden R, Bontrop R, Wall JD, 

Sella G, Donnelly P, McVean G, Przeworski M. 2013. Multiple instances of ancient 

balancing selection shared between humans and chimpanzees. Science 339:1578-1582. 

Levene H. 1953. Genetic equilibrium when more than one ecological niche is available. Am Nat. 

87:331-333. 

Lewis Z, Wedell N, Hunt J. 2011. Evidence for strong intralocus sexual conflict in the Indian 

meal moth, Plodia interpunctella. Evolution 65:2085-2097. 

Livingstone FB. 1992. Polymorphism and differential selection for the sexes. Hum Biol. 64:649-

657. 

Long AD, Lyman RF, Morgan AH, Langley CH, Mackay TFC. 2000. Both naturally occurring 

insertions of transposable elements and intermediate frequency polymorphisms at the 



	  

achaete-scute complex are associated with variation in bristle number in Drosophila 

melanogaster. Genetics 154:1255-1269. 

Long TAF, Agrawal AF, Rowe L. 2012. The effect of sexual selection on offspring fitness 

depends on the nature of genetic variation. Curr Biol. 22:204-208. 

Mank JE. 2009. Sex chromosomes and the evolution of sexual dimorphism: lessons from the 

genome. Am. Nat. 173:141-150. 

Manna F, Martin G, Lenormand T. 2011. Fitness landscapes: an alternative theory for the 

dominance of mutation. Genetics 189:923-937. 

Marsaglia G. 1972. Choosing a point from the surface of a sphere. Ann. Math. Statistics 43:645-

646. 

Martin G. 2014. Fisher’s geometrical model emerges as a property of complex integrated 

phenotypic networks. Genetics, in press. 

Martin G, Lenormand T. 2006. A general multivariate extension of Fisher’s geometrical model 

and the distribution of mutation fitness effects across species. Evolution 6:893-907. 

Michael JR, Schucany WR. 2002. The mixture approach for simulating bivariate distributions 

with specified correlations. The American Statistician 56:48-54. 

Mokkonen M, Kokko H, Koskela E, Lehtonen J, Mappes T, Martiskainen H, Mills SC. 2011. 

Negative frequency-dependent selection of sexually antagonistic alleles in Myodes glareolus. 

Science 334:972-974. 

Muller ME. 1959. A note on a method for generating points uniformly on N-dimensional 

spheres. Comm. Assoc. Comp. Mach. 2:19-20 

Mullon C, Pomiankowski A, Reuter M. 2012. The effects of selection and genetic drift on the 

genomic distribution of sexually antagonistic alleles. Evolution 66:3743-3753.  



	  

Nagylaki T. 1979. Selection in dioecious populations. Ann. Hum. Genet. 14:143-150. 

Nei M, Roychoudhury AK. 1973. Probability of fixation and mean fixation time of an 

overdominant mutation. Genetics 74:371-380. 

Orr HA. 1998. The population genetics of adaptation: the distribution of factors fixed during 

adaptive evolution. Evolution 52:935-949. 

Orr HA. 2000. Adaptation and the cost of complexity. Evolution 54:13-20. 

Orr HA. 2005a. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6:119-127. 

Orr HA. 2005b. Theories of adaptation: what they do and don't say. Genetica 123:3-13. 

Orr HA. 2006. The distribution of fitness effects among beneficial mutations in Fisher's 

geometric model of adaptation. J. Theor. Biol. 238:279-285. 

Orr HA. 2010. The population genetics of beneficial mutations. Phil Trans Roy Soc B. 365:1195-

1201. 

Otto SP, Day T. 2007. A Biologist's Guide to Mathematical Modeling in Ecology and Evolution. 

Princeton University Press 

Pamilo P. 1979. Genic variation at sex-linked loci: quantification of regular selection models. 

Hereditas 91:129-133 

Parsch J, Ellegren H. 2013. The evolutionary causes and consequences of sex-biased gene 

expression. Nat. Rev. Genet. 14:83-87. 

Patten MM, Haig D. 2009. Maintenance or loss of genetic variation under sexual and parental 

antagonism at a sex-linked locus. Evolution 63:2888-2895. 

Patten MM, Haig D, Ubeda F. 2010. Fitness variation due to sexual antagonism and linkage 

disequilibrium. Evolution 64:3638-3642. 

Patten MM, Ubeda F, Haig D. 2013. Sexual and parental antagonism shape genomic 



	  

architecture. Proc. Roy. Soc. B 280:2013117 

Pennell TM, Morrow EH. 2013. Two sexes, one genome: the evolutionary dynamics of 

intralocus sexual conflict. Ecology and Evolution 3:1819-1834. 

Poissant J, Wilson AJ, Coltman DW. 2010. Sex-specific genetic variance and the evolution of 

sexual dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64:97-

107. 

Pomiankowski A, Moller AP. 1995. A resolution of the lek paradox. Proc. Roy. Soc Lond. B 

260:21-29 

Prout T. 1968. Sufficient conditions for multiple niche polymorphism. Am. Nat. 102:493-496. 

Prout T. 2000. How well does opposing selection maintain variation? Pp. 157-181 in Evolution 

Genetics: from Molecules to Morphology, edited by RS Singh and CB Krimbas. Cambridge 

University Press, Cambridge, UK. 

Punzalan D, Delcourt M, Rundle HD. 2014. Comparing the intersex genetic correlation for 

fitness across novel environments in the fruit fly, Drosophila serrata. Heredity 112:143-148. 

Rice SH. 2004. Evolutionary theory: mathematical and conceptual foundations. Sinauer 

Associates. 

Rice WR. 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735-

742 

Rice WR. 1992. Sexually antagonistic genes: experimental evidence. Science 256:1436-1439. 

Robertson A. 1962. Selection for heterozygotes in small populations. Genetics 47:1291-1300. 

Rodgers JL, Nicewander WA. 1988. Thirteen ways to look at the correlation coefficient. The 

American Statistician 42:59-66. 

Rose MR. 1982. Antagonistic pleiotropy, dominance, and genetic variation. Heredity 48:63-78. 



	  

Roze D, Otto SP. 2012. Differential selection between the sexes and selection for sex. Evolution 

66:558-574. 

Seger J, Trivers R. 1986. Asymmetry in the evolution of female mating preferences. Nature 

319:771-773. 

Sellis D, Callahan BJ, Petrov DA, Messer PW. 2011. Heterozygote advantage as a natural 

consequence of adaptation in diploids. Proc. Natl. Acad. Sci. USA 108:20666-20671. 

Stearns SC, Govindaraju DR, Ewbank D, Byars SG. 2012. Constraints on the coevolution of 

contemporary human males and females. Proc. Roy. Soc. Lond. B 279:4836-4844. 

Stulp G, Kuijper B, Buunk AP, Pollet TV, Verhulst S. 2012. Intralocus sexual conflict over 

human height. Biology Letters 23:976-978. 

Turelli M, Barton NH. 2004. Polygenic variation maintained by balancing selection: pleiotropy, 

sex-dependent allelic effects and GxE interactions. Genetics 166:1053-1079. 

Unckless RL, Herren JK. 2009. Population genetics of sexually antagonistic mitochondrial 

mutants under inbreeding. J. Theor. Biol. 260:132-136. 

van Doorn GS, Kirkpatrick M. 2007. Turnover of sex chromosomes induced by sexual conflict. 

Nature 449:909-912. 

van Doorn GS, Kirkpatrick M. 2010. Transitions between male and female heterogamety caused 

by sex-antagonistic selection. Genetics 186:629-645 

Waxman D, Welch JJ. 2005. Fisher's microscope and Haldane's ellipse. Am. Nat. 166:447-457. 

Whitlock MC, Agrawal AF. 2009. Purging the genome with sexual selection: reducing mutation 

load through selection on males. Evolution 63:569-582. 

Wright AE, Mank JE. 2013. The scope and strength of sex-specific selection in genome 

evolution. J. Evol. Biol. 26:1841-1853. 



	  

Wright S. 1969. Evolution and the Genetics of Populations, Vol. 2. University of Chicago Press. 

  



	  

Appendix A: Movements in phenotypic space and selection coefficients 

Let Aj = {x1j, x2j, … xnj} represent the phenotypic value expressed by wild type individuals of the 

jth sex (j = {f, m}), Oj = {O1j, O2j, … Onj } is the location of its optimum, and Oj' = Oj – Aj = {o1j, 

o2j, … onj } is a rescaled optimum that becomes useful further below. Consider a mutation with a 

homozygous magnitude of rm and rf, and heterozygous magnitude of rmh and rfh. The phenotypic 

value expressed by a heterozygote will be Aj + hyj, and a homozygote will be Aj + yj, where yj = 

{y1j , y2j, … ynj} is a mutation vector that describes the set of phenotypic changes in each of the n 

traits (this is described in the “Simulations” section of the main text). The Euclidean distance 

between a wild type individual of sex j and the respective phenotypic optimum is: 

zj = (Oij − xij )
2

i=1

n
∑  

The distance between a heterozygote and its optimum is: 

zj (het ) = [Oij − (xij + hyij )]
2

i=1

n
∑ = (Oij − xij )

22

i=1

n
∑ + (hyij )

2

i=1

n
∑ − 2h oij yiji=1

n
∑

= zj
2 + (hrj )

2 − 2h oij yiji=1

n
∑

 

The exact result in Eq. (2) is obtained by substituting yim = rmmi/M, where M2 = ∑mi
2, and yif = 

rffi/F, where F2 = ∑fi
2 (as described in the “Simulations” section). With sufficiently high 

dimensionality (n > 10 works well) mi/M and fi/F converge to mi/√(n) and fi/√(n) (Connallon and 

Clark 2014), which accounts for the final approximations in Eq. (2). The same approach can be 

taken to obtain values of zj(hom). 

For a random mutation, the fitness of the three genotypes will be wj(wild type) = exp[–ωjzj
2], 

wj(het) = exp[–ωjzj(het)
2], and wj(hom) = exp[–ωjzj(hom)

2]. Selection coefficients are scaled relative to 

the wild type fitness. The heterozygote and homozygote selection coefficients for a random 



	  

mutation are (respectively) sj1 = wj(het)/wj(wild type)  – 1 = exp[ωj(zj
2 – zj(het)

2)] – 1, and sj2 = 

wj(hom)/wj(wild type)  – 1 = exp[ωj(zj
2 – zj(hom)

2)] – 1.  

 

 

Appendix B: Modes of selection and their probabilities 

Define t = ln(1 + s) as the natural logarithm of fitness for a genotype with relative fitness 1 + s. 

Under weak selection (s << 1), t is well approximated as t = ln(1 + s) ~ s. The criterion for 

balancing selection at a diploid locus can be approximated as: 

0 < tmhet + tfhet > tmhom + tfhom         (A1) 

where tmhet = ln(1 + sm1), tfhet = ln(1 + sf1), tmhom = ln(1 + sm2), tfhom = ln(1 + sf2). The criterion for 

invasion of a new mutation is modified to:  

0 < tmhet + tfhet           (A2). 

Let the mutation effect size in heterozygotes be rmh and rfh, where h is the dominance 

coefficient (assumed to fall in the range 0 < h < 1), and the mutation size in homozygotes be rm 

and rf. From eq. (A1), along with eq. (2) and its surrounding text from the main text, the criteria 

for balancing selection can be restated as: 

h(ωmrm
2 +ω f rf

2 ) n
2

<ωmrm omimi
i
∑ +ω f rf ofi fi

i
∑ <

(1− h2 )(ωmrm
2 +ω f rf

2 ) n
2(1− h)

   (A3). 

Terms mi and fi are standard normal variables with cov(mi, fi) = ρmut. The function in the middle 

is therefore normally distributed with respective mean of zero and variance of: 
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where ρmf = ρmut cos(θsel). After dividing the terms of the inequality (A3) by √(var), the function 

in the middle is now distributed as a standard normal [N(0, 1)], and we can now solve for the 

probability of balancing selection: 

Pr(bal.) ≈ 1
2π

e−
t2
2 dt

b

a

∫ =Φ(a)−Φ(b)  

where 

a = (1− h
2 )

(1− h)
(ωmrm

2 +ω f rf
2 ) n

2 (ωmzmrm )
2 + (ω f z f rf )

2 + 2ωmzmrmω f z f rfρmf
=
(1− h2 )
(1− h)

xA  

and 

b = h
(ωmrm

2 +ω f rf
2 ) n

2 (ωmzmrm )
2 + (ω f z f rf )

2 + 2ωmzmrmω f z f rfρmf
= hxA  

which accounts for eq. (7) in the main text. The same basic approach can be taken to calculate 

the probability that selection will favor invasion of a rare mutation. In this case, Pr(sm1 + sf1 > 0) 

= 1 – Φ(b), as in eq. (6). 

 

 

Appendix C: The maximum probability of balancing selection 



	  

To find the specific value of xA that maximizes the probability of balancing selection, we restate 

eq. (7) as: 
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which has a first derivative, with respect to xA, of: 
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The maximum probability of balancing selection is found by setting this function to zero, and 

solving for xA, which yields: 

€ 

ˆ x A = (1− h) 2
1− h2(3− 2h)

ln (1− h2)
h(1− h)
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Appendix D: Mean standardized mutation size 

For βm > 0, and βf = 0 (zm = 0), we can approximate E[xA] by performing a second order Taylor 

Series expansion in the vicinity of rm, rf = E(r), and take the expectation, which leads to: 
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Eq. (10) in the text can be found by substituting βm = 2ωmzm, E(r) = kθ, var(r) = kθ2, and corr(rm, 

rf) = cov(rm, rf)/var(r), and rearranging. Using the same approach for β = βm = βf, we get: 
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Substituting E(r) = kθ, var(r) = kθ2, and corr(rm, rf) = cov(rm, rf)/var(r), and simplifying, yields 

eq. (11) in the text. 

 

 

Appendix E: Allele frequency dynamics and equilibrium of B2 under balancing selection 

Among zygotes, let qm be the frequency of B2 transmitted from males, and qf the frequency of B2 

transmitted from females. The genotypic frequencies among zygotes are: qmqf = [B2B2]; qm(1 – 

qf) + qf(1 – qm) = [B1B2]; (1 – qm)(1 – qf) = [B1B1]. Let q = (qm + qf)/2, and 2ε = qm – qf. Assuming 

weak selection (Nagylaki 1979; Charlesworth and Charlesworth 2010), we approximate the 

allele frequency dynamics to first order in ε. Following selection, the expected allele frequency 

change in males and females will be: 

€ 

Δqm =
(q2 −ε2)(1+ sm2) + [q(1− q) + ε2](1+ sm1)
1+ sm2(q

2 −ε2) + 2sm1[q(1− q) + ε2]
− q −ε ≈ q(1− q)[sm1 + q(sm2 − 2sm1)]

1+ q2sm2 + 2q(1− q)sm1
−ε

Δqf =
(q2 −ε2)(1+ sf 2) + [q(1− q) + ε2](1+ sf 1)
1+ sf 2(q

2 −ε2) + 2sf 1[q(1− q) + ε2]
− q + ε ≈

q(1− q)[sf1 + q(sf 2 − 2sf 1)]
1+ q[sf 2q + 2sf 1(1− q)]

+ ε

 

 

The net change after a generation is (Δqm + Δqf)/2: 

€ 

Δq =
Δqf + Δqm

2
≈

[2(sm1 + sf 1) − (sf 2 + sm 2)]q(1− q)( ˆ q − q)
2

ˆ q =
sf 1 + sm1

2(sm1 + sf 1) − (sf 2 + sm 2)

 

where q̂  is the balanced polymorphic equilibrium when it exists.  

 

 



	  

Appendix F: Criteria for effective balancing selection 

Following Ewens (2004; pp. 26-27), we wish to know the relative proportion of the density, f(q), 

that is found near the deterministic equilibrium value ( q̂ ), compared to the allele frequency 

boundaries: q = 0 and q = 1. Using a 2nd order Taylor series expansion, we can approximate the 

area under the stationary distribution near arbitrary frequency point a: 
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By substituting a = 0.001, a = 0.999, a = q̂  (as appropriate), we obtain eq. (14) of the main text. 

 

	  

	   	  



	  

Table 1. Sex-specific fitnesses and genotype frequencies. 

  Genotype  

 B1B1 B1B2 B2B2 

Female fitness: 1 1 + sf1 1 + sf2 

Male fitness: 1 1 + sm1 1 + sm2 

Zygotic frequency:  (1 – qm)(1 – qf) qm(1 – qf) + qf(1 – qm) qmqf 

 

 

  



	  

 

Figure 1. Fisher’s geometric model with two sexes (an example with two traits). For the jth sex, 

individuals homozygous for a wild-type allele express phenotype Aj, and are separated from their 

optimum (Oj) by distance zj. Mutations alter the phenotype of their carriers, with mutant 

homozygotes expressing a phenotype at a distance rj from the ancestral homozygote (an example 

mutant homozygote is represented by the black diamond). Heterozygotes are similarly oriented 

away from Aj, but have a modified distance of hrj, where h is the dominance coefficient with 

respect to the mutant phenotypic effect. For the example shown, heterozygotes will express an 

intermediate phenotype between Aj and the black diamond, and for most values of h (0 < h < 1), 

the heterozygote phenotype will be closer to the optimum than either homozygote genotype will 

be. In such cases, there will be heterozygote advantage for fitness in the jth sex. Females and 

males may be characterized by distinct fitness optima, and unique positions in phenotypic space 

with respect to each genotype (see Connallon and Clark 2014). 
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Figure 2. Balancing selection in Fisher’s geometric model. (A). Probabilities of purifying 

selection (black), positive selection (red), or balancing selection (blue), as a function of the 

scaled mutation of size, xA. The dotted line represents the probability that selection will favor 

evolutionary invasion of a random mutation of size xA (this is the sum of individual probabilities 

of purifying and balancing selection). Results are for the case of codominant expression in 

heterozygotes (h = ½), and curves were generated using eqs. (6-7). Simulations (not shown) 

confirm that these results are extremely accurate at moderate to high dimensionality (i.e., n > 

10). (B). The maximum probability of balancing selection (black curve), and the critical value of 
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xA ( x̂A ) that maximizes the probability of balancing selection (dotted gray line). Results are 

based on eqs. (7-8). 

  



	  

 

Figure 3. Sex differences in the direction of selection, and sex-by-genotype effects of mutations, 

elevate mean mutation size, E(xA). Solid curves show the elevation of E(xA) relative to an 

idealized population in which the selection and mutational effects are identical between the 

sexes. The fold change to E(xA) is based on numerical evaluation of the bracketed term in eq. 

(11), with ρmut = corr(rm, rf). 
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Figure 4. Balancing selection mechanisms and their relative probabilities. SA selection 

mechanisms (white and gray shading) account for the vast majority of balancing selection cases. 

Heterozygote advantage becomes the dominant form of balancing selection in the restrictive case 

where directional selection and mutant phenotypic effects are strongly concordant between the 

sexes (e.g., zm ! zf, and ρsel, ρmut ! 1). For each parameter set (zm, zf, ρsel, ρmut), 500,000 

balanced polymorphisms were randomly generated using the simulation approach described in 

the text. These results were used to calculate the proportion of balancing selection arising from 

heterozygote advantage, mixed SA, and directional SA. For each parameter combination, 

mutation magnitudes were generated using a bivariate exponential distribution (gamma with 

shape parameter k = 1), with equal marginal distributions, and correlation of corr(rm, rf) = ρmut. 
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Small mutations use E[r] = 0.05; medium mutations use E[r] = 0.2; and large mutations use E[r] 

= 0.4 (these absolute mutation sizes correspond to male-specific scaled sizes of E[xm] = 

E(r)(n0.5)/(2zm) = 0.25,  E[xm] = 1, and E[xm] = 2, respectively). Representative results are shown 

for n = 25 and ωm = ωf = ½, with additional results presented in the Supplementary Material 

(Figs. S1-S3).  

  



	  

 

Figure 5. The efficacy of selection differs between mechanisms of balancing selection. Results 

show the distributions (means and 75% confidence intervals) of α and q̂  for mutations under 

each of the three forms of balancing selection. The areas above the continuous curves represent 

the parameter space for effectively strong selection, based on eq. (14) with criteria R > 10 (see 

the text surrounding eq. (14)). Gray curves (lower) represent the parameter space for a 

population with effective size Ne = 100,000; black curves (higher) are for populations with Ne = 

10,000. For each balancing selection mechanism, and for each parameter set (zm, zf, ρsel), 10,000 

balanced polymorphisms were randomly generated using the simulation approach described in 

the main text. These results were used to calculate means and confidence intervals. For each 

parameter combination, mutation magnitudes were generated using a bivariate exponential 
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distribution (gamma with shape parameter k = 1), with equal marginal distributions, and 

correlation of ρmut = corr(rm, rf). Three different mean mutation sizes were used: small mutations 

use E[r] = 0.05; medium mutations use E[r] = 0.2; and large mutations use E[r] = 0.4 (these 

absolute mutation sizes correspond to male-specific scaled sizes of E[xm] = E(r)(n0.5)/(2zm) = 

0.25,  E[xm] = 1, and E[xm] = 2, respectively). Representative results are shown for ρmut = 0.9, n = 

25, and ωm = ωf = ½, with additional results presented in the Supplementary Material (Figs. S4-

S8).  

 


