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A SPATIALLY EXPLICIT STOCHASTIC MODEL DEMONSTRATES THE FEASIBILITY OF 
WRIGHT'S SHIFTING BALANCE THEORY 
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Abstract.-Recently there has been a resurgence of theoretical papers exploring Wright's Shifting Balance Theory 
(SBT) of evolution. The SBT explains how traits which must pass through an adaptive valley may evolve in sub- 
structured populations. It has been suggested that Phase III of the SBT (the spread of new advantageous traits through 
the populations) proceeds only under a very restricted set of conditions. We show that Phase III can proceed under 
a much broader set of conditions in models that properly incorporate a key feature of Wright's theory: local, random 
migration of discrete individuals. 

Key words.-Diffusion approximation, Sewall Wright, shifting-balance theory, stochastic simulation models, substruc- 
tured populations. 
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Coyne et al. (1997) recently sounded the death knell of 
Wright's shifting balance theory of evolution (SBT). While 
they acknowledge that "Given the multifarious nature of evo- 
lution, almost every conceivable scenario must occasionally 
occur," they report to have found "no compelling evidence 
that Wright's shifting balance theory accounts for the evo- 
lution of a single adaptation, much less a significant pro- 
portion of adaptations, in nature. Until such evidence is at 
hand," they continue, "we favor the view that adaptations 
are usually produced by Fisherian mass selection, a process 
that is not only more parsimonious than the SBT but has also 
been shown to occur widely (Endler 1986)." Following Hal- 
dane (1959), they conclude that the third phase is the weakest 
link in the Shifting Balance Theory. (In the third phase an 
advantageous trait that evolved in one of the subpopulations 
in Phase I and became fixed in that subpopulation in Phase 
II, spreads throughout the region of subpopulations.) Coyne 

3Present address: United States Department of Agriculture/ARS, 
Tropical Fruit and Vegetable Research Laboratory, P.O. Box 4459, 
Hilo, Hawaii 96720; E-mail: sp@aloha.net. 

et al. (1997) use several theoretical models to argue that the 
third phase proceeds only under a restrictive set of conditions, 
and they infer that those conditions will be rare enough in 
nature so that the third phase need not be considered a major 
force in evolutionary change. The models they consider in- 
clude both deterministic (Crow et al. 1990; Gavrilets 1996) 
and stochastic models (Lande 1985; Barton and Rouhani 
1987, 1993; Rouhani and Barton 1987). We argue, however, 
that these models have not yet explored the third phase of 
the SBT properly and that it is yet too early to dismiss 
Wright's theory. 

When one looks at the models that have been used to study 
Wright's third phase, two things are apparent: many of them 
are deterministic and most of the stochastic models are island 
models which assume nonlocal movement (Table 1). In ad- 
dition, all of the models have assumed that migration is a 
deterministic process (i.e., there is a tacit assumption of in- 
finite population size during the migration phase). 

For example, Barton and Rouhani (1993) use a diffusion 
model to demonstrate that the third phase of the shifting 
balance occurs when selection, migration, and drift are of the 

TABLE 1. Most models for Phase III of the shifting balance have not involved stochastic and locally spatially explicit dynamics. It is 
in the upper left hand corner that Wright envisioned the third phase to most readily proceed and most of the models have ignored this 
region. "Island" models ignore the actual arrangement of local demes in space, while "stepping stone" models are spatially explicit at 
the demic level and limit migration to the most nearby populations. Previous stepping stone models of Phase III have all been deterministic 
(lower left corner), whereas the stochastic island models (upper right corner) have only included random allelic drift within populations 
but omit the allelic drift resulting from random sampling of migrants from a finite population. 

Assumptions about migration 

Stepping stone Island 

Stochastic this paper Allelic drift within local demes, determin- 
istic migration 

e.g., Lande 1985; Barton and Rouhani 
1993; Rouhani and Barton 1993 

Deterministic e.g., Wade and McCauley 1988; Crow et al. 1990 (two e.g., Slatkin 1977; Wade and McCauley 
demes); Phillips 1993 (two demes); Gavrilets 1996 1988 
(multiple demes) 

1834 

C) 1998 The Society for the Study of Evolution. All rights reserved. 



BRIEF COMMUNICATIONS 1835 

same order. However, their model uses infinite population 
size during the migration phase, and because it is an island 
model, the influence of local migration is lost. This is very 
different from the process of drift and local spread that Wright 
envisioned for the third phase of the SBT (Wright 1988; 
Turner 1992). 

Gavrilets (1996) used a small, coupled-map lattice to con- 
clude that in two dimensions the third phase proceeds under 
a very restricted set of conditions. The model, however, does 
not have stochastic effects (on allelic frequency) in either the 
migration or selection components. Moreover, Gavrilets's 
(1996) conclusions are based on the model's behavior for 
very weak selection only (as opposed to what is often found 
in wild populations [Endler 1986]). 

A hint that Phase III may proceed more readily than Coyne 
et al. (1997) conclude comes from the work of Durrett and 
Levin (1993). "Case 2" of Durrett and Levin (1993) mirrors 
the third phase of the shifting balance wherein competition 
between "hawks" and "doves" is analogous to disruptive 
selection at a single locus in a diallelic genetic system. When 
the process was modeled with a nonspatial dynamical system, 
it showed two stable equilibria at all "hawks" and at all 
"doves," and an unstable saddle point. Depending on initial 
conditions, one peak or the other was reached, much like 
what has been seen in the models reviewed in Coyne et al. 
(1997). However, when a discrete spatial model with sto- 
chastic local migration was used, fixation of the dominant 
type (analogous to phase III of the SBT) always occurred. 
The system converged to fixation of the same dominant type 
for generic initial conditions. 

To follow up this hint, we constructed and simulated an 
analogous two-dimensional stepping-stone genetic model 
(Appendix 1). Like other models (e.g., Gavrilets 1996), this 
model ignores adaptive topographies generated by epistatic 
interactions. However, it captures the essence of Wright's 
SBT, including nonadditive genetic variance, and an adaptive 
topography that has two local maxima separated by an adap- 
tive valley. The model has (integer) finite population size, 
incorporates within-deme drift, and uses stochastic local mi- 
gration. We found that phase III proceeds over a much wider 
set of parameter values than previously noted. Barton and 
Rouhani (1993) predict that Phase III should be favored when 
0.1 < Nm < 1 and should proceed more quickly when 0.01 
< Ns < 10 (N = number of individuals per deme, s = se- 
lection coefficient, m = migration probability). In the sim- 
ulation model, Phase III proceeds in all seven replicates when 
Nm = 0.05, albeit very slowly (Table 2a). We found that for 
Nm = 5, Ns = 25 when N = 50; and for Nm = 10, Ns = 50 
when N = 100 (Table 2a), Phase III proceeds rapidly for all 
replicate runs of the model, which is unexpected given Barton 
and Rouhani's (1993) results. Figure la demonstrates the time 
course of one replicate of the simulation model where Phase 
III proceeds. 

For the parameter values of selection = 0.05 and migration 
= 0.01, Gavrilets (1996) predicts that a polymorphism should 
be maintained. In almost every replicate of the simulation 
model the more fit peak is reached for low N (N = 50 and 
N = 100), but not for larger N (N = 500 and N = 1000). 
Even when values of selection and migration are well within 
the range for which Gavrilets (1996) predicts the less fit peak 

TABLE 2. Median (Ost and 3rd quartile) time until fixation of the 
more fit "A" allele in the simulation model of the shifting balance 
theory. The range of values for the parameters is s = (0.0005, 0.005, 
0.05, 0.5), m = (0.001, 0.003, 0.01, 0.03, 0.1), and n = (50, 100, 
500, 1000). The maximum time was 30,000 generations. Each pa- 
rameter combination was replicated seven times. Entries with a 
median time to fixation equals 30,000 indicate that the proportion 
of demes with an allelic frequency of > 0.5 was greater than 50%, 
suggesting that the system was on its way to fixing the A allele in 
all the demes in those replications, but had not yet achieved it. 

Number 
reps 

Phase II 
s m n Time to fixation (Max 7) 

(a) Constant deme size 
0.0005 0.001 50 30000 (30000, 30000) 1 
0.005 0.001 50 30000 (30000, 30000) 1 
0.05 0.001 50 22662 (18208, 27928) 7 
0.05 0.003 50 7421 (6922, 8387) 7 
0.05 0.01 50 2196 (2050, 2429) 5 
0.5 0.03 50 28036 (25501,30000) 5 
0.5 0.1 50 201 (184, 221) 7 
0.005 0.001 100 20390 (19493, 23388) 3 
0.05 0.001 100 30000 (30000, 30000) 1 
0.005 0.003 100 11888 (11888, 11888) 1 
0.05 0.003 100 19044 (15772, 23400) 7 
0.05 0.01 100 3863 (2984, 4401) 7 
0.0005 0.1 100 21698 (19366, 24030) 2 
0.5 0.1 100 383 (368, 494) 7 
0.005 0.001 500 26655 (24484,28507) 5 

(b) Varying deme size 
0.5 0.001 50 7754 (6413, 8349) 5 
0.5 0.003 50 2276 (1936, 2733) 6 
0.5 0.01 50 807 (743, 853) 5 
0.5 0.03 50 456 (441, 473) 4 
0.5 0.1 50 114 (114, 114) 1 
0.05 0.001 100 8678 (8678, 8678) 1 
0.5 0.001 100 7014 (5606, 9554) 5 
0.0005 0.003 100 30000 (30000, 30000) 1 
0.05 0.003 100 1917 (1767, 1929) 3 
0.5 0.003 100 2415 (2368,2482) 4 
0.0005 0.01 100 30000 (30000, 30000) 1 
0.005 0.01 100 19201 (18610, 19791) 2 
0.5 0.01 100 1123 (986,1226) 3 
0.0005 0.03 100 13005 (13005, 13005) 1 
0.5 0.03 100 366 (351, 391) 3 
0.5 0.1 100 127 (127, 127) 1 
0.0005 0.001 500 30000 (30000, 30000) 6 
0.005 0.001 500 6558 (5196, 6739) 5 
0.05 0.001 500 4131 (3852, 5134) 6 
0.5 0.001 500 7375 (7142,7778) 3 
0.0005 0.003 500 30000 (30000, 30000) 7 
0.005 0.005 500 3771 (3648, 4203) 7 
0.00 0.003 500 2650 (2523, 2886) 4 
0.5 0.003 500 3776 (3056, 3691) 3 
0.0005 0.01 500 13176 (11883, 19404) 7 
0.005 0.01 500 11507 (10665, 20217) 5 
0.05 0.01 500 1164 (1164, 1164) 1 
0.5 0.01 500 1549 (1426, 1668) 4 
0.5 0.03 500 498 (579, 520) 3 
0.5 0.1 500 125 (125, 125) 1 
0.0005 0.001 1000 30000 (30000, 30000) 7 
0.005 0.001 1000 5474 (4826, 5675) 5 
0.05 0.001 1000 4975 (4501, 6051) 6 
0.5 0.001 1000 11165 (10466, 13680) 5 
0.0005 0.003 1000 20459 (19248, 20627) 7 
0.005 0.003 1000 6605 (6214, 8489) 6 
0.05 0.003 1000 3938 (3756, 4120) 2 
0.5 0.003 1000 3195 (2701,3308) 5 
0.0005 0.01 1000 15688 (13220, 20347) 7 
0.5 0.01 1000 1476 (1346, 1764) 6 
0.5 0.03 1000 463 (417, 514) 5 
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FIG. 1. The dynamics of the simulation model in one of the replicates in which the more fit peak was reached for parameter values 
where Barton and Rouhani (1993) predict that the third phase of shifting balance should not be favored. Plot (a) shows the dynamics 
when the population size, N is fixed. In (b) the size of each deme varied randomly and independently between generations, with a uniform 
distribution on (O, 2N) and hence mean deme size N. Plots give the proportion of demes in which the more fit allele has reached a 
frequency of > 50%. Note the changes in the x- and y-axes among the plots. 
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should be maintained (P = 0.33, ml2s = 0.33), in three of 
15 replicates of the simulation model at N = 100 Phase III 
proceeded. 

Figure 2 plots where Phase III proceeded, over the range 
of parameter values explored in the simulation model at dif- 
ferent values of N (deme size). Table 2a presents a much 
different structure than that predicted by Barton and Rouhani 
(1993) and Gavrilets (1996). These two examples show that 
stochastic, local migration can greatly expand the range of 
conditions under which Phase III can proceed. Moreover, if 
we allow random fluctuations in population size, such as 
might be caused by environmental stochasticity, the results 
change even more dramatically. Table 2b shows that with a 
variable population size, the range of parameter values for 
which Phase III proceeds, is dramatically expanded over what 
is expected given prevailing theory. For example, in Figure 
3 nearly half the replicates showed a peak shift regardless of 
population size or migration rate. Whether or not the peak 
shift occurs seems to be dominated by chance events within 
the model and is not strongly affected by the parameters 
typically implicated in controlling the third phase. Figure lb 
indicates that Phase III can proceed more rapidly when as- 
sisted by random fluctuations in deme size. 

The potential significance of drift in allelic frequencies due 
to local random migration is evident even in a simple two- 
deme model, which can be analyzed via a standard diffusion 
approximation (Appendix 2). In this model the allelic fit- 
nesses cover the same range as those in the simulation model. 
Here we consider a single peak shift in deme 2, which starts 
at a low frequency p of the more fit allele A, while neigh- 
boring deme 1 has already become fixed for the more fit allele. 
This should approximate the situation if the fitness advantage 
of the A allele is large enough that reverse shifts are essen- 
tially impossible. Each generation, after random mating, each 
individual in deme 1 has probability m of migrating to deme 
2 (i.e., the number of migrants is binomial), and an equal 
number of migrants leaves deme 1 to maintain constant deme 
size. As in the full model, mating and selection within demes 
are stochastic with discrete individuals. 

In the diffusion approximation, stochastic migration al- 
ways led to a more rapid shift to the more fit peak, and this 
effect increased with increasing levels of migration (Fig. 4). 
Allelic drift resulting from local stochastic migration has 
been largely ignored, with migration typically modeled de- 
terministically as mN. However, our simple diffusion model 
for peak shifts in a single deme shows that deterministic 
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FIG. 4. Results from Diffusion model. Each of plots graphs t/2N as a function of selection and migration, where tf is the expected time 
until fixation. The rows are for different starting values of p (0.1, 0.2, 0.3) and the columns are for nonrandom migration, random 
migration, and the difference between the two cases. Note that for every value of s and m in the model, random migration always 
decreases the time to fixation of the more fit allele, suggesting that the shifting balance may proceed more readily when migration is 
random. 

modeling of migration omits a potentially important factor 
in local peak shifts and hence in phase III of the SBT. 

Is it time to set aside the shifting balance theory? We argue 
that it is premature to dismiss the SBT until models have 
been explored that match more closely what Wright originally 
envisioned (Levin et al. 1997) including all three phases of 
the SBT. The SBT is certainly more complex than Fisherian 
mass selection, but the interaction of genetics, ecology, pop- 
ulation structure, metapopulation dynamics, and stochasticity 
are all part of nature's reality and can influence the tempo 
and mode of evolution. 
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APPENDIX 1 
The model presented here is a stepping stone model on a square 

grid in which a diallelic diploid population (alleles A and a) inhabits 
each local deme. The state variables for the models are the (integer) 
number of individuals of each genotype in each local deme. The 
fitnesses (relative survival probabilities of offspring) for the three 
genotypes AA, Aa and aa are 1 + k, 1 -s and ] respectively. In all 
cases, k = sI(l - s) so that 1 + k = 1/(1 -s). Changes in genotype 
frequencies due to mating, selection and migration were all modeled 
as stochastic "coin tosses" (that is, as draws from the appropriate 
trinomial distributions determined by the current genotype fre- 
quencies, migration rate, deme size, and fitnesses). Migration is 
symmetric and limited to adjacent grid cells, and selection is soft 
(i.e., the total number of individuals per deme is not affected by 
the allele frequencies). Mating was random within demes, so that 

the offspring genotypes prior to selection were chosen in Hardy- 
Weinberg proportions. The model was run on a 7 x 7 grid of demes 
with the center deme initialized as fixed at the higher-fitness peak 
(all AA), and all others fixed at the lower-fitness peak (all aa). 
Results are reported for simulations of length 30,000 generations. 

APPENDIX 2 

For the two-deme model with one-way migration, the frequency 
of the A allele in the second deme after one round of selection, 
random mating, and migration is given by P2 = p1 -pm + m, where 

pP(1 + k) + p(l - p)(I - s) 
= p2(l + k) + 2p(l - p)(l - s) + (1 - p)2 

p is the initial frequency in the second deme, Pi - 1I(2N) B(2N,P1) 
and m - I/(2N)B(2N,m) if migration is stochastic, otherwise m 
equals the mean migration rate m. The parameters s and k are defined 
in the legend to Figure 4. Note that if m is constant, our model is 
formally equivalent to a model of selection and one-way mutation 
to the more favorable allele. The diffusion approximation for the 
model can be derived from the expression above for P2 by standard 
methods (e.g., Karlin and Taylor 1981). The infinitesimal mean and 
variance for the diffusion approximation are given by p(P) = p(p(K 
+ 34) -p2(K + 24) -4 -q) + Xq or2(p) = q + p(l -p), respectively 
where 

s = 412N, k = K/2N, m = q/2N. 

Mean time to fixation of the favorable allele in the diffusion 
approximation is then computed directly from the infinitesimal mo- 
ments; for the formulas see Ewens (1979). 

Evolution, 52(6), 1998, pp. 1839-1843 

NEGATIVE MATERNAL EFFECT REVISITED: A TEST ON TWO POPULATIONS OF ORCHESELLA 
CINCTA L. (COLLEMBOLA: ENTOMOBRYIDAE) 

ED STAM,' ANNEKE ISAAKS, AND GER ERNSTING2 
Department of Ecology and Ecotoxicology, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands 

'E-mail: stam@bio.vu.nl 
2E-mail: ernsting@bio.vu.nl 

Abstract.-A Dutch population of Orchesella cincta had been demonstrated to exhibit a negative maternal effect on 
age at first reproduction, which caused alternation of short and long generations. The adaptive significance of such a 
mechanism was assumed to be associated with the bivoltine life cycle of Dutch 0. cincta. We expected that it would 
be absent in a non bivoltine population sampled in Siena, Italy. To test this hypothesis we performed a parent-offspring 
regression experiment with both populations simultaneously. The experiment showed that there was no negative 
maternal effect in both populations. We leave open the question of the cause of the discrepancy between the previous 
result with the Dutch population and the present result. The results of our experiment were also used to determine 
heritabilities of the traits age, mass and number of molts at first reproduction, and size of the first clutch. The estimates 
of heritabilities were often not significantly different from zero, especially in the Italian population which had only 
one significant heritability. 

Key words.-Heritability, maternal effect, Orchesella cincta, reaction norm. 
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Phenotypic plasticity is the environmental part of pheno- 
typic variation, and the function that describes, for a certain 
genotype, the dependence between a phenotypic value and 
an environmental variable is called the norm of reaction 
(Stearns and Koella 1986; Roff 1992; Stearns 1992). From 

an evolutionary point of view it is expected that an organism 
will respond to all environmental variation that it is likely 
to meet during its lifetime in such a manner that fitness is 
maximized. There are many ways in which environments 
vary, all of which can be characterized by the categories 
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